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Big Picture

• Central to human intelligence.
• Tremendous practical value.
• Colossal developments recently.
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Goal of This Tutorial

• Basic NLP literacy.
• Getting up to date with recent developments.

▶ Architectures
▶ Language tasks
▶ Tremendous developments in the field recently!

• Know where to look at if you’re starting an NLP project
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Language Models

• A statistical model that assigns probabilities to the words in a sentences.
• Most commonly: Given previous words, what should the next one be?
• Neural language model: Model the probability of words given others using
neural networks.
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Architectures

Which architecture is most suitable?
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Recurrent Architectures

• We can use recurrent architectures.
• LSTM, GRU ...
• Great for variable length inputs, like sentences.
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Recurrent Architectures

What are some of the problems with recurrent architectures?

• Not parallelizable across instances.
• Cannot model long dependences.
• Optimization difficulties (vanishing gradients).
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We’d like an architectural primitive that is:

• Ideally feed-forward
• Can facilitate between-token interactions
• Can model long dependences easily.

Attention to the rescue!

• There are many forms of attention. Today we’ll focus on
scaled dot product attention.
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Attention

• Three inputs: queries, keys and values.
• ”Return a combination of the values based on the similarities between keys
and queries”.

• Dimensionalities:
▶ Q ∈ Rnqxdkq
▶ K ∈ Rnkvxdkq
▶ V ∈ Rnkvxdv

•
A(Q, K, V) = V(softmax(K

TQ
dkq

)) (1)
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Attention

Quiz!

• True of False: The dimensionality of queries have to match the
dimensionality of the keys.

TRUE
• True or False: The number of keys have to match the number of values. TRUE
• True or False: The number of keys have to match the number of queries.
FALSE

• Dimensionalities:
▶ Q ∈ Rnqxdkq
▶ K ∈ Rnkvxdkq
▶ V ∈ Rnkvxdv
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Attention

We need to make two central decisions:

• How do we compute similarity?
• How do we ’normalize’ the similarity scores amongst values?
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Attention

• Similarity: Dot product between keys and queries.
• Interesting theorem: In high dimensions, two randomly sampled 1 vectors
are almost always approximately perpendicular to each other.

• Normalization: Soǒtmax along the keys/values!
• Result: Scaled dot product attention.
• We get the following attention mechanism:

A(Q, K, V) = V(softmax(K
TQ
dkq

)) (2)

1From, lets say, a isotropic multivariate Gaussian distribution.
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Attention
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Self-Attention

• What is self-attention?

• Use the same tensor for keys, values and queries!
• What are the keys/queries/values in a self attention layer processing
sentence

• The features corresponding to each token!
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Attention

• Lingering question: What is learned in an attention layer?
▶ The space in which the similarities are computed.
▶ The transformations on the values.

• What if we’d like to have different notions of similarity on the same set of
tokens?

• Multi head attention to the rescue!
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Attention
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Transformers
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Transformers

Properties of the transformer architecture:

• Fully feed forward.
• Equivariance properties of scaled dot product attention (important):

▶ How does the output change if we permute the order of queries?
(equivariance)

▶ How does the output change if we permute the key-value pairs in
unison? (invariance)

Exercise: How about self-attention?
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Performance Comparison
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What’s next?

• Brief intro to self supervised learning
• BERT (i.e. Self-supervised training of language models)
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Self Supervised Learning

Three types of learning:

• Supervised learning
• Reinforcement learning
• Unsupervised/self-supervised learning:

▶ When the label is in the data itself!
▶ Possible to make use of large amounts of data with no additional
labelling efforts.
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Self Supervised Learning

Examples of self-supervised learning:

• Predict next frame in a video.
• Image completion.
• Auto-encoding tasks.
• Rotation prediction.
• Predicting next word from previous ones.
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Pretraining Language Models

• Can we use large amounts of text data to pretrain language models?

• Considerations:
▶ How can we fuse both leǒt-right and right-leǒt context?
▶ How can we facilitate non-trivial interactions between input tokens?

• Previous approaches:
▶ ELMO (Peters. et. al., 2017): Bidirectional, but shallow.
▶ GPT (Radford et. al., 2018): Deep, but unidirectional.
▶ BERT (Devlin et. al., 2018): Deep and bidirectional!
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BERT Workflow

• The BERT workflow includes:
▶ Pretrain on generic, self-supervised tasks, using large amounts of data
(like all of Wikipedia)

▶ Fine-tune on specific tasks with limited, labelled data.
• The pretraining tasks (will talk about this in more detail later):

▶ Masked Language Modelling (to learn contextualized token
representations)

▶ Next Sentence Prediction (summary vector for the whole input)
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BERT Architecture
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BERT Architecture

Properties

• Two input sequences.
▶ Many NLP tasks have two inputs (question answering, paraphrase
detection, entailment detection etc. )

• Computes embeddings
▶ Both token, position and segment embeddings.
▶ Special start and separation tokens.

• Architecture
▶ Basically the same as transformer encoder.

• Outputs:
▶ Contextualized token representations.
▶ Special tokens for context.
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BERT Embeddings

• How we tokenize the inputs is very important!
• BERT uses the WordPiece tokenizer (Wu et. al. 2016)
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(Aside) Tokenizers

• Tokenizers have to balance the following:
▶ Being comprehensive (rare words? translation to different languages)
▶ Total number of tokens
▶ How semantically meaningful each token is.

• This is an activate area of research.
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Pretraining tasks

• Masked Language Modelling (i.e. Cloze Task (Taylor, 1953)
• Next sentence prediction
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Masked Language Modelling

• Mask 15% of the input tokens. (i.e. replace with a dummy masking token)
• Run the model, obtain the embeddings for the masked tokens.
• Using these embeddings, try to predict the missing token.
• ”I love to eat peanut ___ and jam. ” Can you guess what’s missing?
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Masked Language Modelling

This procedure forces the model to encode context information in the features of
all of the tokens.
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Next Sentence Prediction

• Goal is to summarize the complete context (i.e. the two segments) in a single
feature vector.

• Procedure for generating data
▶ Pick a sentence from the training corpus and feed it as ”segment A”.
▶ With 50% probability, pick the following sentence and feed that as
”segment B”.

▶ With 50% probability, pick the a random sentence and feed it as
”segment B”.

• Using the features for the context token, predict whether segment B is the
following sentence of segment A.

• Turns out to be a very effective pretraining technique!
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Fine Tuning

Procedure:

• Add a final layer on top of BERT representations.
• Train the whole network on the fine-tuning dataset.
• Pre-training time: In the order of days on TPUs.
• Fine tuning task: Takes only a few hours max.
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Fine Tuning

33



Pointers

The transformer section of this tutorial is influenced by the fantastic talk by
Lukasz Kaiser on transformers:
https://www.youtube.com/watch?v=rBCqOTEfxvgt=1704s
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