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Big Picture

- Central to human intelligence.
- Tremendous practical value.

- Colossal developments recently.



Goal of This Tutorial

- Basic NLP literacy.
- Getting up to date with recent developments.

» Architectures
» Language tasks
» Tremendous developments in the field recently!

- Know where to look at if you're starting an NLP project



Language Models

- A statistical model that assigns probabilities to the words in a sentences.
- Most commonly: Given previous words, what should the next one be?

- Neural language model: Model the probability of words given others using
neural networks.



Architectures

Which architecture is most suitable?



Recurrent Architectures

- We can use recurrent architectures.
+ LSTM, GRU ...
- Great for variable length inputs, like sentences.
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Recurrent Architectures

What are some of the problems with recurrent architectures?



Recurrent Architectures

What are some of the problems with recurrent architectures?

- Not parallelizable across instances.
- Cannot model long dependences.

- Optimization difficulties (vanishing gradients).



We'd like an architectural primitive that is:

- |deally feed-forward
- Can facilitate between-token interactions
- Can model long dependences easily.

Attention to the rescue!

- There are many forms of attention. Today we'll focus on
scaled dot product attention.



Attention

- Three inputs: queries, keys and values.

- "Return a combination of the values based on the similarities between keys
and queries”.

- Dimensionalities:
» Qc anxqu
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A(Q,K, V) = V(softmax(d—kq)) (1)



Attention

Quiz!

- True of False: The dimensionality of queries have to match the
dimensionality of the keys.
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Attention

Quiz!
- True of False: The dimensionality of queries have to match the
dimensionality of the keys. TRUE
- True or False: The number of keys have to match the number of values. TRUE
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Attention

Quiz!

- True of False: The dimensionality of queries have to match the
dimensionality of the keys. TRUE

- True or False: The number of keys have to match the number of values. TRUE

- True or False: The number of keys have to match the number of queries.
FALSE
- Dimensionalities:
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Attention

We need to make two central decisions:

- How do we compute similarity?

- How do we 'normalize’ the similarity scores amongst values?
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Attention

- Similarity: Dot product between keys and queries.

- Interesting theorem: In high dimensions, two randomly sampled " vectors
are almost always approximately perpendicular to each other.
- Normalization: Softmax along the keys/values!
- Result: Scaled dot product attention.
- We get the following attention mechanism:
K'Q

A(Q,K,V) = V(softmax(d—m)) (2)

"From, lets say, a isotropic multivariate Gaussian distribution.
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Attention

Scaled Dot-Product Attention
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Self-Attention

- What is self-attention?
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Self-Attention

- What is self-attention?

- Use the same tensor for keys, values and queries!
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Self-Attention

- What is self-attention?
- Use the same tensor for keys, values and queries!

- What are the keys/queries/values in a self attention layer processing
sentence
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Self-Attention

- What is self-attention?
- Use the same tensor for keys, values and queries!

- What are the keys/queries/values in a self attention layer processing
sentence

- The features corresponding to each token!
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Attention

- Lingering question: What is learned in an attention layer?
» The space in which the similarities are computed.
» The transformations on the values.
- What if we'd like to have different notions of similarity on the same set of
tokens?
- Multi head attention to the rescue!



Attention

Multi-Head Attention
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Transformers

Properties of the transformer architecture:

- Fully feed forward.
- Equivariance properties of scaled dot product attention (important):

» How does the output change if we permute the order of queries?
(equivariance)

» How does the output change if we permute the key-value pairs in
unison? (invariance)

Exercise: How about self-attention?



Performance Comparison

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) o(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) o(1) O(n/r)




What's next?

19



What's next?

- Brief intro to self supervised learning

- BERT (i.e. Self-supervised training of language models)

19



Self Supervised Learning

Three types of learning:

- Supervised learning
- Reinforcement learning

- Unsupervised/self-supervised learning:

» When the label is in the data itself!
» Possible to make use of large amounts of data with no additional
labelling efforts.
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Self Supervised Learning

Examples of self-supervised learning:

- Predict next frame in a video.
- Image completion.

- Auto-encoding tasks.

- Rotation prediction.

- Predicting next word from previous ones.
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Pretraining Language Models

- Can we use large amounts of text data to pretrain language models?
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Pretraining Language Models

- Can we use large amounts of text data to pretrain language models?
- Considerations:

» How can we fuse both left-right and right-left context?
» How can we facilitate non-trivial interactions between input tokens?
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Pretraining Language Models

- Can we use large amounts of text data to pretrain language models?
- Considerations:

» How can we fuse both left-right and right-left context?
» How can we facilitate non-trivial interactions between input tokens?

- Previous approaches:
» ELMO (Peters. et. al,, 2017): Bidirectional, but shallow.

» GPT (Radford et. al,, 2018): Deep, but unidirectional.
» | BERT (Devlin et. al,, 2018): Deep and bidirectional!
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BERT Workflow

- The BERT workflow includes:
» Pretrain on generic, self-supervised tasks, using large amounts of data
(like all of Wikipedia)
» Fine-tune on specific tasks with limited, labelled data.
- The pretraining tasks (will talk about this in more detail later):

» Masked Language Modelling (to learn contextualized token
representations)
» Next Sentence Prediction (summary vector for the whole input)
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BERT Architecture
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BERT Architecture

Properties

- Two input sequences.
» Many NLP tasks have two inputs (question answering, paraphrase
detection, entailment detection etc. )
- Computes embeddings
» Both token, position and segment embeddings.
» Special start and separation tokens.
- Architecture
» Basically the same as transformer encoder.
+ Outputs:
» Contextualized token representations.
» Special tokens for context.
25



BERT Embeddings
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Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.

- How we tokenize the inputs is very important!
- BERT uses the WordPiece tokenizer (Wu et. al. 2016)
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(Aside) Tokenizers

- Tokenizers have to balance the following:

» Being comprehensive (rare words? translation to different languages)
» Total number of tokens
» How semantically meaningful each token is.

- This is an activate area of research.
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Pretraining tasks

- Masked Language Modelling (i.e. Cloze Task (Taylor, 1953)

- Next sentence prediction
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Masked Language Modelling

- Mask 15% of the input tokens. (i.e. replace with a dummy masking token)
- Run the model, obtain the embeddings for the masked tokens.
- Using these embeddings, try to predict the missing token.

- "I love to eat peanut ___ and jam. " Can you guess what's missing?
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Masked Language Modelling

This procedure forces the model to encode context information in the features of
all of the tokens.
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Next Sentence Prediction

- Goal is to summarize the complete context (i.e. the two segments) in a single
feature vector.
- Procedure for generating data
» Pick a sentence from the training corpus and feed it as "segment A",
» With 50% probability, pick the following sentence and feed that as
"segment B".
» With 50% probability, pick the a random sentence and feed it as
"segment B".
- Using the features for the context token, predict whether segment B is the
following sentence of segment A.

- Turns out to be a very effective pretraining technique!
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Procedure:

- Add a final layer on top of BERT representations.
- Train the whole network on the fine-tuning dataset.
- Pre-training time: In the order of days on TPUs.

- Fine tuning task: Takes only a few hours max.
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Fine Tuning

System MNLI-(m/mm) QQP  QNLI SST-2 CoLA  STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTBAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.
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The transformer section of this tutorial is influenced by the fantastic talk by
Lukasz Kaiser on transformers:
https://www.youtube.com/watch?v=rBCqOTEfxvgt=1704s

34



