
CSC413 Tutorial11: Policy Gradient

by Sheng Jia

March 31st, 2020

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 1 / 58

Content

State and Action

Policy

Trajectory and how to sample it

Objective in Reinforcement Learning

Policy optimization by policy gradient ascent

Trajectory-based Policy Gradient Derivation
(Log-derivative trick. Exploit conditional independence)
Break: Apply policy gradient for playing Dota2
Reward-to-go based Policy Gradient Derivation
(Exploit conditional independence. expected grad-log-prob equal 0)
Reducing variance of policy gradient estimate by Baseline
(Var(x − y) can be less than Var(x). Expected grad-log-prob equal 0)

Implementing Policy Gradient in Pytorch
(Credit to the notebook from the last year’s CSC421)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 2 / 58

Problem Setup
State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 3 / 58

Problem Setup
State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

State does not have to be the “physical location” of the agent.
E.g. st : how many ppl infected with covid19 today.

at : whether or not wash your hands now.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 4 / 58

Problem Setup
Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by, for example, a stochastic policy. This can be a
conditional distribution that is parameterized by θ.

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 5 / 58

Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer. i.e. The
size of your network output will be A, with each output denoting the
probability of taking that action.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 6 / 58

Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

If both S and A are continuous or too large (e.g. Robot control),
map s to parameters associated with distributions such as µ and σ2

for Gaussian distribution. Then sample the value, which we treat as
the action, from this distribution under the mapped µ and σ.
(A simpler solution is to discretize continuous action space. e.g. OpenAI

Dota2 bot [1])

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 7 / 58

Problem Setup
Trajectory

Trajectory is nothing but a set of random variables, and its
distribution is a joint distribution over 2T + 1 r.v.:

τ = (s1, a1, s2, ..., sT , aT , sT+1)

p(τ ;θ) = p (s1, a1, s2, ..., sT , aT , sT+1;θ) = (?)

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 8 / 58

Problem Setup
Trajectory

We can simplify using conditional independences from DAG:

(?) = ρ0(s1)ΠT
t=1πθ(at |st)p(st+1|st , at)

Remark: we will use p(τ ;θ) to denote that changing our policy
parameters θ induce a different trajectory distribution.

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 9 / 58

Problem Setup
How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes.)

s1 ∼ ρ0(s) at ∼ πθ(at |st) st+1 ∼ p(st+1|st , at)

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 10 / 58

Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 11 / 58

Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 12 / 58

Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Return is also a random variable because it is a function of 2T
random variables in the trajectory.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 13 / 58

Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ)] = Eτ∼p(τ ;θ) [R(τ)] = (?)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 14 / 58

Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ)] = Eτ∼p(τ ;θ) [R(τ)] = (?)

And by the ancestral sampling, we can further simplify:

(?) = E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

R(st , at)

]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 15 / 58

Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 16 / 58

Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

Gradient of the objective w.r.t policy

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 17 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ)]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 18 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ)]

= ∇θ

∫
p(τ ;θ)R(τ) dτ

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 19 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ)]

= ∇θ

∫
p(τ ;θ)R(τ) dτ

=

∫
∇θp(τ ;θ)R(τ) dτ

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 20 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ)]

= ∇θ

∫
p(τ ;θ)R(τ) dτ

=

∫
∇θp(τ ;θ)R(τ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 21 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ)]

= ∇θ

∫
p(τ ;θ)R(τ) dτ

=

∫
∇θp(τ ;θ)R(τ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)

= E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ)]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 22 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ)] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 23 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ)] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]
where 1© = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 24 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ)] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]
where 1© = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)

=���
��:0

∇θρ0(s1) +
T∑
t=1

∇θ log πθ(at |st) +
T∑
t=1�

��
���

���:
0

∇θ log p(st+1|st , at)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 25 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 26 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s

(i)
t)

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′)

]]

In practice, this gradient is estimated by executing the policy πθk
in the

environment N times (N times ancestral sampling).

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 27 / 58

Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s

(i)
t)

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′)

]]

The log-derivative trick in step 1 allows for this type of gradient estimate
of the expected value even though the thing inside expectation was a
blackbox function using samples from the parameterized distribution.

“score function estimator”

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 28 / 58

Break: Apply policy gradient for playing Dota2
Successful application of policy optimization by policy gradient

In Dota2, each team have five players controlling their unique agents.
Players gather golds by killing monsters and enemies to buy items.
The final objective is destroy an enemy structure called Ancient.
OpenAI agents recently won against the best team in the world. [1]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 29 / 58

Break: Apply policy gradient for playing Dota2
Observation (Input of the policy)

State S: 16000-dimensional vector with information such as the
distances to the observed enemies. But it is partially observable
because teams don’t see the map far from the current locations even
if they went there before. LSTM is used to memorize previous states.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 30 / 58

Break: Apply policy gradient for playing Dota2
Action (Output of the policy)

Action A: Continuous, but discretized into 8000-80000 actions.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 31 / 58

Break: Apply policy gradient for playing Dota2
Policy optimization by policy gradient ascent

Besides winning the game, intermediate rewards such as kill enemies
are provided. PPO, an improved policy gradient method , is used to
train the policy with Adam optimizer. [1]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 32 / 58

Break: Apply policy gradient for playing Dota2
Large-scale engineering

Rollouts against the current bot means self-play [1]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 33 / 58

Back to Policy Gradient

Next: Deriving Reward-to-go Policy Gradient

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 34 / 58

Reward-to-go Policy Gradient

Intuitively, the rewards R(s1, a1), ...R(st−1, at−1) obtained before taking
the action at should not tell how good action at is. This claim is saying:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

= E
s1∼ρ0(s)

at∼πθk (at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 35 / 58

Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 36 / 58

Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 37 / 58

Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′]
]

by iterated E

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 38 / 58

Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′]
]

by iterated E

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

R(st′ , at′) E
st ,at

[∇θ log πθk
(at |st)|st′ , at′]︸ ︷︷ ︸

(?) apply iterated expectation again

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 39 / 58

Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk)
[∇θ log πθk

(at |st)|st] |st′ , at′
]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 40 / 58

Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk)
[∇θ log πθk

(at |st)|st] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 41 / 58

Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk)
[∇θ log πθk

(at |st)|st] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 42 / 58

Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk)
[∇θ log πθk

(at |st)|st] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫
p(st |st′ , at′ ;θk)

(∫
p(at |st , st′ , at′ ;θk)∇θ log πθk

(at |st) dat
)
dst

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 43 / 58

Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk)
[∇θ log πθk

(at |st)|st] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫
p(st |st′ , at′ ;θk)

(∫
p(at |st , st′ , at′ ;θk)∇θ log πθk

(at |st) dat
)
dst

= E
st

 E
at∼p(at |st ,st′ ,at′ ;θk)

[∇θ log πθk
(at |st)|st]︸ ︷︷ ︸

(�)

|st′ , at′

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 44 / 58

Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 45 / 58

Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 46 / 58

Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)

(�) = Eat∼πθ(at |st) [∇θ log πθ(at |st)|st] =

∫
πθ(at |st)∇θ log πθ(at |st) dat

=

∫
∇θπθ(at |st) dat = ∇θ

∫
πθ(at |st) dat = ∇θ1 = 0

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 47 / 58

Reward-to-go Policy Gradient

Hence, all the reward terms for t ′ < t will naturally disappear when taking
the expectation over τ = (s1, a1,, sT , aT , sT+1)

Reward-to-go Policy Gradient

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 48 / 58

Reducing variance of policy gradient estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′)

]]

As ĝ is random, we can talk about bias and variance. It is easy to see
that this estimator is unbiased, E [ĝ] = g = ∇θJ (θ).

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 49 / 58

Reducing variance of policy gradient estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′)

]]

As ĝ is random, we can talk about bias and variance. It is easy to see
that this estimator is unbiased, E [ĝ] = g = ∇θJ (θ). Consider

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′)− Vπθ(s

(i)
t)

]]

where Vπθ(st) is random since st is random in this context.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 50 / 58

Reducing variance of policy gradient estimate by Baseline

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′)− Vπθ(s

(i)
t)

]]

=
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′)

]]

− 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)
[
Vπθ(s

(i)
t)
]]

= ĝ − f

E [f] = E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t)
[
Vπθ(s

(i)
t)
]]]

= E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(at |st) [Vπθ(st)]

]]
τ i i.i.d

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 51 / 58

Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st]

]
out from inner E

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 52 / 58

Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st]

]
out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 53 / 58

Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st]

]
out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
∇πθ(at |st) dat

]
= · · ·

=
1

N

N∑
i=1

T∑
t=1

Est [Vπθ(st)0]

= 0

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 54 / 58

Reducing variance of policy gradient estimate by Baseline

E
[
ĝ′
]

= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 55 / 58

Reducing variance of policy gradient estimate by Baseline

E
[
ĝ′
]

= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent. But the point is that we want to decrease the

variance by:

Var(ĝ′) = Var(ĝ) + Var(f)− 2Cov(ĝ, f) ≤ Var(ĝ)

if Cov(ĝ, f) ≥ 1

2
Var(f)

In practice, we do see strong positive correlations between ĝ and f because
the empirical rewards for (st , at , ...) and the value function evaluation for

the sampled state st do positively correlate.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 56 / 58

Demo in PyTorch
(Credit to last year CSC421 RL tutorial)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 57 / 58

Reference

Christopher Berner et al. “Dota 2 with Large Scale Deep
Reinforcement Learning”. In: arXiv preprint arXiv:1912.06680 (2019).

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 58 / 58

	References

