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Content

State and Action

Policy

Trajectory and how to sample it

Objective in Reinforcement Learning

Policy optimization by policy gradient ascent

Trajectory-based Policy Gradient Derivation
(Log-derivative trick. Exploit conditional independence)
Break: Apply policy gradient for playing Dota2
Reward-to-go based Policy Gradient Derivation
(Exploit conditional independence. expected grad-log-prob equal 0)
Reducing variance of policy gradient estimate by Baseline
(Var(x − y) can be less than Var(x). Expected grad-log-prob equal 0)

Implementing Policy Gradient in Pytorch
(Credit to the notebook from the last year’s CSC421)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 2 / 58



Problem Setup
State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.
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Problem Setup
State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

State does not have to be the “physical location” of the agent.
E.g. st : how many ppl infected with covid19 today.

at : whether or not wash your hands now.
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Problem Setup
Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by, for example, a stochastic policy. This can be a
conditional distribution that is parameterized by θ.

pθ(at |st) = πθ (at |st) = π (at |st ;θ)
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Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer. i.e. The
size of your network output will be A, with each output denoting the
probability of taking that action.
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Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

If both S and A are continuous or too large (e.g. Robot control),
map s to parameters associated with distributions such as µ and σ2

for Gaussian distribution. Then sample the value, which we treat as
the action, from this distribution under the mapped µ and σ.
(A simpler solution is to discretize continuous action space. e.g. OpenAI

Dota2 bot [1])
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Problem Setup
Trajectory

Trajectory is nothing but a set of random variables, and its
distribution is a joint distribution over 2T + 1 r.v.:

τ = (s1, a1, s2, ..., sT , aT , sT+1)

p(τ ;θ) = p (s1, a1, s2, ..., sT , aT , sT+1;θ) = (?)

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��
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Problem Setup
Trajectory

We can simplify using conditional independences from DAG:

(?) = ρ0(s1)ΠT
t=1πθ(at |st)p(st+1|st , at)

Remark: we will use p(τ ;θ) to denote that changing our policy
parameters θ induce a different trajectory distribution.

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��
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Problem Setup
How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes.)

s1 ∼ ρ0(s) at ∼ πθ(at |st) st+1 ∼ p(st+1|st , at)

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��
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Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 11 / 58



Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)
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Objective in Reinforcement Learning
Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Return is also a random variable because it is a function of 2T
random variables in the trajectory.
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Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ )] = Eτ∼p(τ ;θ) [R(τ )] = (?)
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Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ )] = Eτ∼p(τ ;θ) [R(τ )] = (?)

And by the ancestral sampling, we can further simplify:

(?) = E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

R(st , at)

]
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Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk
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Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

Gradient of the objective w.r.t policy

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)

= E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]
where 1© = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)ΠT

t=1πθ(at |st)p(st+1|st , at)
)︸ ︷︷ ︸

1©

[
T∑

t′=1

R(st′ , at′)

]
where 1© = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)

=���
��:0

∇θρ0(s1) +
T∑
t=1

∇θ log πθ(at |st) +
T∑
t=1�

��
���

���:
0

∇θ log p(st+1|st , at)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s

(i)
t )

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′ )

]]

In practice, this gradient is estimated by executing the policy πθk
in the

environment N times (N times ancestral sampling).
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s

(i)
t )

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′ )

]]

The log-derivative trick in step 1 allows for this type of gradient estimate
of the expected value even though the thing inside expectation was a
blackbox function using samples from the parameterized distribution.

“score function estimator”
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Break: Apply policy gradient for playing Dota2
Successful application of policy optimization by policy gradient

In Dota2, each team have five players controlling their unique agents.
Players gather golds by killing monsters and enemies to buy items.
The final objective is destroy an enemy structure called Ancient.
OpenAI agents recently won against the best team in the world. [1]
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Break: Apply policy gradient for playing Dota2
Observation (Input of the policy)

State S: 16000-dimensional vector with information such as the
distances to the observed enemies. But it is partially observable
because teams don’t see the map far from the current locations even
if they went there before. LSTM is used to memorize previous states.
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Break: Apply policy gradient for playing Dota2
Action (Output of the policy)

Action A: Continuous, but discretized into 8000-80000 actions.
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Break: Apply policy gradient for playing Dota2
Policy optimization by policy gradient ascent

Besides winning the game, intermediate rewards such as kill enemies
are provided. PPO, an improved policy gradient method , is used to
train the policy with Adam optimizer. [1]
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Break: Apply policy gradient for playing Dota2
Large-scale engineering

Rollouts against the current bot means self-play [1]
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Back to Policy Gradient

Next: Deriving Reward-to-go Policy Gradient
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Reward-to-go Policy Gradient

Intuitively, the rewards R(s1, a1), ...R(st−1, at−1) obtained before taking
the action at should not tell how good action at is. This claim is saying:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

= E
s1∼ρ0(s)

at∼πθk (at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′ ]
]

by iterated E
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′ ]
]

by iterated E

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

R(st′ , at′) E
st ,at

[∇θ log πθk
(at |st)|st′ , at′ ]︸ ︷︷ ︸

(?) apply iterated expectation again
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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk )
[∇θ log πθk

(at |st)|st ] |st′ , at′
]]
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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk )
[∇θ log πθk

(at |st)|st ] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat
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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk )
[∇θ log πθk

(at |st)|st ] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat
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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk )
[∇θ log πθk

(at |st)|st ] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫
p(st |st′ , at′ ;θk)

(∫
p(at |st , st′ , at′ ;θk)∇θ log πθk

(at |st) dat
)
dst
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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
R(st′ , at′)E

st

[
E

at∼p(at |st ,st′ ,at′ ;θk )
[∇θ log πθk

(at |st)|st ] |st′ , at′
]]

The above step can be verified by:

(?) =

∫ ∫
p(st , at |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫ ∫
p(at |st , st′ , at′ ;θk)p(st |st′ , at′ ;θk)∇θ log πθk

(at |st) dstdat

=

∫
p(st |st′ , at′ ;θk)

(∫
p(at |st , st′ , at′ ;θk)∇θ log πθk

(at |st) dat
)
dst

= E
st

 E
at∼p(at |st ,st′ ,at′ ;θk )

[∇θ log πθk
(at |st)|st ]︸ ︷︷ ︸

(�)

|st′ , at′
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Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��
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Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:
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′

�� ��
′⊥⊥ , |�� ��
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′ ��

⊥⊥ , |�� ⧸ ��
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Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)
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Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)

(�) = Eat∼πθ(at |st) [∇θ log πθ(at |st)|st ] =

∫
πθ(at |st)∇θ log πθ(at |st) dat

=

∫
∇θπθ(at |st) dat = ∇θ

∫
πθ(at |st) dat = ∇θ1 = 0
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Reward-to-go Policy Gradient

Hence, all the reward terms for t ′ < t will naturally disappear when taking
the expectation over τ = (s1, a1, ...., sT , aT , sT+1)

Reward-to-go Policy Gradient

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk (at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]
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Reducing variance of policy gradient estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

As ĝ is random, we can talk about bias and variance. It is easy to see
that this estimator is unbiased, E [ĝ] = g = ∇θJ (θ).
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Reducing variance of policy gradient estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

As ĝ is random, we can talk about bias and variance. It is easy to see
that this estimator is unbiased, E [ĝ] = g = ∇θJ (θ). Consider

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )− Vπθ(s

(i)
t )

]]

where Vπθ(st) is random since st is random in this context.
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Reducing variance of policy gradient estimate by Baseline

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )− Vπθ(s

(i)
t )

]]

=
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

− 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )
[
Vπθ(s

(i)
t )
]]

= ĝ − f

E [f] = E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )
[
Vπθ(s

(i)
t )
]]]

= E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(at |st) [Vπθ(st)]

]]
τ i i.i.d
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Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st ]

]
out from inner E
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Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st ]

]
out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]
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Reducing variance of policy gradient estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st) E

at∼πθ
[∇θ log πθ(at |st)|st ]

]
out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ(st)

∫
∇πθ(at |st) dat

]
= · · ·

=
1

N

N∑
i=1

T∑
t=1

Est [Vπθ(st)0]

= 0

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 54 / 58



Reducing variance of policy gradient estimate by Baseline

E
[
ĝ′
]

= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent.
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Reducing variance of policy gradient estimate by Baseline

E
[
ĝ′
]

= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent. But the point is that we want to decrease the

variance by:

Var(ĝ′) = Var(ĝ) + Var(f)− 2Cov(ĝ, f) ≤ Var(ĝ)

if Cov(ĝ, f) ≥ 1

2
Var(f)

In practice, we do see strong positive correlations between ĝ and f because
the empirical rewards for (st , at , ...) and the value function evaluation for

the sampled state st do positively correlate.
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Demo in PyTorch
(Credit to last year CSC421 RL tutorial)
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