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Associated Colaboratory Notebook

https://colab.research.qgoogle.com/drive/1F9g01bDekuHgba-s6el-MuyxtSQazvAl

This implements a simple GAN on MNIST with Jax (or Autograd).


https://colab.research.google.com/drive/1F9qO1bDekuHqbq-s6eI-MuyxtSQazvAl

Overview

1. GAN Case Study
2. GAN Training Difficulties



GAN Case Study - BigGAN

Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large Scale GAN Training for High Fidelity Natural Image Synthesis."
International Conference on Learning Representations. 2018.

(a) 128128 (b) 256x256 © (9512x512 d)

Figure 4: Samples from our BigGAN model with truncation threshold 0.5 (a-c) and an example of
class leakage in a partially trained model (d).



BigGAN Tricks

Self-Attention module (see [14]) for global structure
Hinge loss

Class-conditional information

Spectral Normalization of weight matrices

Update Discriminator more than Generator

Model weight averaging

ok owbdpeE

See https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/ for a nice summary of each point



https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/

BigGAN Tricks

6. Orthogonal initialization and regularization of weight matrices

7.Large batch size

8. More capacity

9. Skip-connections

10. Truncation trick - use a truncated Gaussian for latent space during inference.

11. Non-standard ADAM settings - set momentum low

See https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/ for a nice summary of each point


https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/

GAN Training

At least 3 main training problems with GANs

(1) How do we assess how well the GAN did?
(2) Arethe gradients for the Generator (and Discriminator) sensible? l.e., not infinite /0
(3) Does our optimization algorithm converge with correct gradients?



Assessing GAN performance

Having people look at samples doesn’t always work

From [4]
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If we have a downstream task, could use the performance on that



Assessing GAN performance

Inception Score: Estimates performance by how well Inception
v3 classifies it as a known object. “Human judgement of quality”

Frechet Inception Distance: Calculate statistics on real and
generated images with inception v3. Then estimate the
difference between these distributions. Proposed by [3]

Good Reading on these scores:
https://machinelearningmastery.com/how-to-implement-the-frechet-incepti
on-distance-fid-from-scratch/

IS(G) = exp ( Exnp, Dxr( p(ylx) || p(y) ) )

FID = || M, — M,||3 + Tr(C, + C, — 2(C.C,)?)

FJD vs IS as p function gf truncation
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From [2], Showing truncation curves.
Illustrating quality/diversity tradeoff


https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

Sensible GAN Gradients

@ Original minimax cost:
J6 = Eq[log(1 — D(G(2)))]
@ Modified generator cost:

Je = E,[—log D(G(2))]

@ This fixes the saturation problem.

modified
cost

minimax
cost
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Sensible GAN Gradients

From https:/f-t-s.qithub.io/projects/icr/ with associated paper [14]

Left - what we want. Right - what happens

" Generator density
e Points of training data
Discriminator output



https://f-t-s.github.io/projects/icr/

Sensible GAN Gradients

Problem: Not-saturating loss doesn’'t minimize a divergence.

E..p, [-log (D¢ (z))]
= KL(p, |l pdata) — 2J8(Pdatall Po)+
E;rpine. [log DE ()] + 2log 2.

[13] provides a derivation of this,
and the picture



Sensible GAN Gradients

10

08

0.6

— Density of real

— Density of fake

— GAN Discriminator
WGAN Critic

LN

Vanishing gradients
in regular GAN

2 k} 6

o)
. -
. -
. -
. & a6
e8 . <
. -
% o P
. - 5
- -
% K
ooy " . Zoa
< % s N
P . - [
s . K =
£ PR
0 % o = B
.
. -
. K
. - 0z
. -
02 % o
% < a1
. .
. -
. .
.~
20 a0
-18 -0% an o3 10 -19 -0% ao 03 i0

Figure 1: These plots show p(Pg,[Py) as a function of 8 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is conlinuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimaz GAN saturates and results in vanishing
gradients. Our WGAN crilic provides very clean gradients on all parts of the space.

Images from [5]



WGAN W(P,,PPg) = llisll‘:.psl Eznr [f(z)] — Eznr[f(7)]

Theorem 3. Let P, be any distribution. Let Py be the distribution of gg(Z) with Z

a random variable with density p and gy a function satisfying assumption 1. Then,
there is a solution f : X — R to the problem

||}ll.,l?§l E:t~?r [f(:l!)] = IE.:A-P@ [f(l')]

and we have
VO“’(PN IP@) =t _E:~p(:)[v9f(99(z))]

Ly " = E[D(x)] — E[D(G(2))]
Lg 4N = E[D(G(2))]
Wy « clip_by_value(W,,—0.01,0.01)



Other GAN Losses

Check out https://github.com/znxlwm/pytorch-generative-model-collections for some different GAN losses in
Pytorch.

There have been many different proposed solutions to this since WGAN came oout


https://github.com/znxlwm/pytorch-generative-model-collections

Sensible GAN Optimization

0* — . 0 0
Eq. from [6] and [7] G ar%glmfgng( ¢, 0p)

Solve for D* argngmnf( G, 0p (0c))

0p (0c) = argemaxf (8g,0p),
D

f(0c,0p) = Eznpya,. llog (D (2;6p))] + E,onro,1) log (1 — D (G (2;0c) ;6p))]

* S Pdata (-’17)
= (m) B Pdata (CU) + pa (CU) .



Sensible GAN Optimization

Substitute D* into the loss for G and get a divergence

D* (x) s Pdata (:E) .
Pdata (.’13) + yYe (.’13)
Eanpine 108 DG ()] + Exnp, flog(1 — D(x))] = C(G) = —log(4) + KL (pml P*-w_;"a) + KL (pg Pdm_zﬂ’g)

C(G) = —log(4) +2 - JSD (pyua [Ipg )



Sensible GAN Optimization

Problem! Optimal D* is a function of G. The response function D*(G) is difficult to differentiate (or even
evaluate).

8¢, = argminmax f (6¢,0p)
fc 6o

- argeminf (0c,0p (8c))
G

0y (0g) = arggmaxf (0c,0p),
D



Sensible GAN Optimization

Idea 1: Approximate D*(G) in a way with an easy derivative

Idea 2: Use a smarter optimization algorithm that can work with only first (or second) order information
about the losses.



Sensible GAN Optimization

Idea 1: Approximate D*(G) in a way with an easy derivative 00 =0
D — VYD
Unrolled diff tiati in[7 k
nrolled differentiation as in[7] 9k+1 _ N kdf (OG, HD)
Only needs second order information D
* 1 k
b be) = 15, %

dfx (0c,0p) Of (0c,05 (6c,0p)) i of (0c, 0% (8c,0p)) dOX (6¢,6p)
dbg e 96X (0, 6p) doe



Sensible GAN Optimization

Idea 2: Design a smarter optimization alg - remember, our goal is to find fixed points in a vector field,
subject to curvature constraints
2.3  VARIATIONAL INEQUALITY PROBLEM FORMULATION

We first consider the local necessary conditions that characterize the solution of the smooth two-player
game (3), defining stationary points, which will motivate the definition of a variational inequality. In
the unconstrained setting, a stationary point is a couple (8*, *) with zero gradient:

[VeLc(0*. ") = [[VeLn(0%,9%)| = 0. ()

When constraints are present,” a stationary point (8", ") is such that the directional derivative of From [8]
each cost function is non-negative in any feasible direction (i.e. there is no feasible descent direction):

Volc(0',¢*)(0—0*)>0 and V,Lp(0',¢") (¢—¢*) =0, Y(0,p) €O xd. (5
Defining w = (8, ), w* = (0*,¢%), O “'o x &, Eq. (5) can be compactly formulated as:
Fw) (w-w") 20, YweQ where F(w)% [Vola(0,p) Voln(0,9)] . (6



A More General Problem

A special case of learning in differentiable games - see [11] for more

Have n players, each with aloss L_i.

Letw=(w_1,..,w_n) where w_i is the parameters of the ith player.

The dynamics of simultaneous gradient descent given by v(w) = [grad_{w_1}L_1, ..., grad_{w_n}L_n]

Jacobian of dynamics given by

Vol ‘Verely = Nl
V?WZ.WI ez VEVZ£2 e v\zwz.wn 82
J(w) = : :
Va"n W t‘n vafn W2 gn e Valn gn



Classification of fixed points for 2-D Dynamics

. . . Poincaré Diagram: Classification of Phase Portaits in the (det A, Tr A)-plane
Eigenvalues of 2x2 matrix A satisfy:

A=0:
det A=1(Tr A)?

tr(A) + /tr(A)? — 4 det(A)
2

line of stable fixed points ine of unstable fixed points




Sensible GAN optimization

How about minimizing the joint-gradient norm? Proposed in [4].

Could do a weighted combination of this and original loss - called Consensus Optimization (CO)
T
ez - 2
v(p,0) = [VoLn(p,0) VeLc(e,0)] L(z) = }|lv(z)|

Problem: New fixed points could violate curvature constraints



Sensible Optimization

Lets view optimization as a dynamical system.

. Vo f(9,0)
The optimization algorithm gives our dynamics: U(Q' 0) = (V:g(qb, 9)

We can analyze the fixed points of our dynamics system by looking an eigenvalues of the Jacobian of
dynamics:

: V2f(6.0) Vaof(s,6)
”“""”=(—v§,of(¢,o) —V21(6.0) )



Sensible GAN Optimization

A toy example: Bilinear problems

min max 8 Ap+80'b+c'p, AecR¥*P
OcRT pER?

An even more toy example: min_x max_y x*y

Simultaneous Gradient descent on this objectives gives dynamics v = [x, -y],and v’ = [[O, 1], [-1, O]]

’,”.—-‘\“‘

The eigenvalues of v’ are +- i! ORI
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Sensible GAN Optimization

A solution for Bilinear games [8]: def 05
= (0,9)

Averaging:

Extrapolation:

Start

2 T-1

f

s ST — Z Pi
t=0

Compute extrapolated point: wy ./, = Palw: — nF(w)],

Perform update step:

w1 = Polw, — YIF(W1+1/2)]-

—&— Adam with 4 =0.01 —e— Extrapalation from the past y = 0.5
Gradient method 5 = 0.1 =4 Extrapalation v = 0.6
—— Averaging 4= 2.0

Figure 1: Comparison of the basic gradient method (as well as
Adam) with the techniques presented in §3 on the optimization
of (9). Only the algorithms advocated in this paper (Averag-
ing, Extrapolation and Extrapolation from the past) converge
quickly to the solution. Each marker represents 20 iterations.
We compare these algorithms on a non-convex objective in §G.1.




Sensible GAN Optimization

Order of updates?

0¢+1 =6, — N
P41 = Pt + b1

Ois1 = 0 — Ny

: , . Alternating update:
Ors1 = O + 1y R {

Simultaneous update: {

Alternating updates are better! Use more information



Method 3 Bounded Converges

T =0 X N
fhm. 5 -0 ; ;
Sensible GAN Optimization T I
Thm. 6 0 P, £

Extrapolation generalizes gradient descent linear convergence results to bilinear games.

What about generalizing momentum? Well, in some cases we want negative momentum due to complex
eigenvalues in the dynamics [9]. Acceleration like in single-objective case is still open question

Fyp(we, wi1) = (wes1,we) Theorem 3. The eigenvalues of VF,, s(w*) are
where W = we — (W) + Blwe — we-1), pan(8) = max {|u+ (8, NI, lu-(8,m N}

3
pe(Bn ) = (1-mA+ )T (1)

where A i= 1 — g, A € Sp(Vv(w*)) and A}
is the complex square root of A with positive real part®.
Moreover we have the following Taylor approzimation,




Sensible GAN Optimization

What about generalizing optimization algorithms that correct for curvature like Newton method?

Algorithm 2 Follow-the-Ridge (FR) for general-sum Stackelberg games.

Fol Iow-the-rldge [1]: Require: Learning rate 7, and 7y ; number of iterations 7.
1: fort =1....,T do
2: Xeg1 & Xe — e D f(Xe, ¥1) b total derivative Dy f = Vi f — V2,9(V3,9) 'Vy f

3 Ve € ¥e — iy Vyg(xe,¥e) + 0x(V5,9) " V5,9Dx f(xe, ¥e)

-~ GDA
0GDA
--- EG

-== SGA
) -10
-10. -5. 0 5 10 -10 -5 0 5 10 B
(a) GDA diverges (b) GDA converges to a bad fixed (c) Limiting cycle

point that is non local minimax



Sensible GAN Optimization

Algorithm 1: Competitive Gradient Descent (CGD)

Another method: for0< k< N-1do

s 0 22 2 =~ v 2 .
Competitive Gradient Descent [10] Thr = i — 1 (Id 772 D;"fD,zng)_l (V=f UD;ynyg) :
Ye+1 =Yk —n (Id—n?D2_gD2 f) (Vyg—nD: gV.f);

return (zy, yn):

What I think that they think that I think ... that they do: Another game-theoretic interpretation
of CGD follows from the observation that its update rule can be written as

Az\ (1 D2, f\ (V.f &
Ay) \nDyg W Vyg)’



Some GAN Visualizations

Some visualizations for training a simple GAN
Generator: 1 Hidden layer with 64 units. 4 dimension noise
Discriminator: 1 Hidden layer with 64 hidden units

Optimizer: Adam with settings from BigGAN



GAN Samples and Discriminator Prediction

Iter 0: Discriminator Prediction
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Phase(A)
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Phase(A)

Decomposing “who has each Eigenvalue”
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- 1.0

- 0.

[o+]

Joreurddiinsia uoodoud

- 0.

N

-14

-12

-10

- 0.0

Eigenvector value In parameter

Iter 0: Decomp Eigenvectors into D/G

4.0 1

3.5 1

3.0 A

2.5

2.0

1.5

1.0 1

0.5

— D/G Border
A2732=(0.000000, — 0.000000)
A3264 = (0.000000, 0.000000)

2000

4000 6000 8000
Parameters




Eigenspaces the Joint-Gradient Lies in

Iter O: Eig Phase / (log) Mag Dist Grad Decomp
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BigGAN Tricks Again

Self-Attention module and hinge loss

Class-conditional information

Spectral Normalization of weight matrices

Update Discriminator more than Generator

Model weight averaging

Orthogonal initialization and regularization of weight matrices
Large batch size

More capacity

Skip-connections

Truncation trick - use a truncated Gaussian for latent space during inference.
Non-standard ADAM settings

W O NOoU A WD E

(I
= O

See https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/ for a nice summary of each point



https://machinelearningmastery.com/a-gentle-introduction-to-the-biggan/
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