Tutorial: Best Practices of ConvNet Application

Yuan-Hong Andrew Liao
Feb. 25, 2020
Overview

- Normalization
- Transfer Learning
- Label Imbalance
- Model the Long Tail
Normalization: BatchNorm

- Avoid Covariance Shift
- Compute batch statistic during training
 - Require large batchsize
Normalization: LayerNorm

- How about Recurrent Neural Network?
 - LayerNorm
Normalization: GroupNorm

- Large Feed-Forward network
 - Sometimes batch size is small due to computational constraints
- How to adjust?
 - GroupNorm
Normalization: GroupNorm
Normalization: GroupNorm

Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.
Normalization: **SyncBatchNorm**

- Large Feed-Forward network
 - Sometimes batch size is small due to computational constraints
- Split large batch into several and distribute them many GPUs
 - Collect the batch statistics from all devices
Transfer learning: idea

Instead of training a deep network from scratch for your task:

- Take a network trained on a different domain for a different source task
- Adapt it for your domain and your target task

Variations:
- Same domain, different task
- Different domain, same task

Slides from: https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
Freeze or fine-tune?

Bottom n layers can be frozen or fine tuned.

- **Frozen**: not updated during backprop
- **Fine-tuned**: updated during backprop

Which to do depends on target task:

- **Freeze**: target task labels are scarce, and we want to avoid overfitting
- **Fine-tune**: target task labels are more plentiful

In general, we can set learning rates to be different for each layer to find a tradeoff between freezing and fine tuning

[Slides from:](https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a)
Transfer Learning: Rule of thumb

<table>
<thead>
<tr>
<th>New Dataset</th>
<th>Similar to Source dataset</th>
<th>Dissimilar to Source dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Freeze</td>
<td>Try SVM first from low-level features</td>
</tr>
<tr>
<td>Large</td>
<td>Fine-tune all</td>
<td>Train from scratch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule of thumb</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://cs231n.github.io/transfer-learning/#tf</td>
</tr>
</tbody>
</table>
Transfer Learning

- Additional advice:
 - smaller learning rate for ConvNet weights

http://cs231n.github.io/transfer-learning/#tf
Task Transfer Learning

- Same domain, different tasks
- Computer Vision Taskonomy: http://taskonomy.stanford.edu
- What is the relation between 3d keypoint detection and depth estimation?
Task Transfer Learning

- Same domain, different tasks
- Computer Vision Taskonomy: http://taskonomy.stanford.edu
- What is the relation between 3d keypoint detection and depth estimation?
- Is it able to structurally represented?

Taskonomy: Disentangling Task Transfer Learning, Amir et al, 2018
Task Transfer Learning

Task Similarity Tree Based on Transfering-Out

Taskonomy: Disentangling Task Transfer Learning, Amir et al. 2018
Transfer Learning from ImageNet?

- Always better?
- ImageNet: 130M
- COCO: 8.6M

Rethinking ImageNet Pre-training, Kaiming et al, 2019
Transfer Learning from ImageNet?

- Always better?

ImageNet: 130M

COCO: 8.6M

Rethinking ImageNet Pre-training, Kaiming et al, 2019
Transfer Learning from ImageNet?

- With only 1k training image:
 - w/ pretrain: 9.9 AP
 - Random init: 3.5 AP

Rethinking ImageNet Pre-training, Kaiming et al, 2019
Label Imbalance

- Semantic Segmentation
- Image Segmentation
- Contour Detection
Label Imbalance

- Reweight the loss by class ratio
- Data Resampling
Model the Long Tail

Train

Test

https://www.youtube.com/watch?v=A45wrs1g8VA
Model the Long Tail

Train

Test

Cat (many-shot class)

Fox (medium-shot class)

Panda (few-shot class)

https://www.youtube.com/watch?v=A45wrs1g8VA
Model the Long Tail

- Tail distribution
- Still an Open question

(a) Long-tail distribution on the SUN-397 dataset.
Learning to Model the Tail, 2017

- Transfer learning

(a) Long-tail distribution on the SUN-397 dataset.
Learning to Model the Tail, 2017

- Transfer learning
- Meta-learner to learn the “model dynamics”
Reference

- http://cs231n.github.io/understanding-cnn/