Tutorial: Best Practices of ConvNet Application

Yuan-Hong Andrew Liao

Feb. 25, 2020

Overview

- Normalization
- Transfer Learning
- Label Imbalance
- Model the Long Tail

Normalization: BatchNorm

- Avoid Covariance Shift
- Compute batch statistic during training
 - Require large batchsize

Normalization: LayerNorm

- How about Recurrent Neural Network?
 - LayerNorm

Normalization: GroupNorm

- Large Feed-Forward network
 - Sometimes batch size is small due to computational constraints
- How to adjust?
 - GroupNorm

Normalization: GroupNorm

Normalization: GroupNorm

Figure 5. Sensitivity to batch sizes: ResNet-50's validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

Normalization: SyncBatchNorm

- Large Feed-Forward network
 - Sometimes batch size is small due to computational constraints
- Split large batch into several and distribute them many GPUs
 - Collect the batch statistics from all devices

Transfer learning: idea

Instead of training a deep network from scratch for your task:

- Take a network trained on a different domain for a different source task
- Adapt it for your domain and your target task

Slides from: 9

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a

Freeze or fine-tune?

Bottom *n* layers can be frozen or fine tuned.

- Frozen: not updated during backprop
- Fine-tuned: updated during backprop

Which to do depends on target task:

- Freeze: target task labels are scarce, and we want to avoid overfitting
- Fine-tune: target task labels are more plentiful

In general, we can set learning rates to be different for each layer to find a tradeoff between freezing and fine tuning

Slides from: 10

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a

Transfer Learning: Rule of thumb

	New Dataset is small	New Dataset is large
Similar to Source dataset	Freeze	Fine-tune all
Dissimilar to Source dataset	Try SVM first from low-level features	Train from scratch

http://cs231n.github.io/transfer-learning/#tf 11

Transfer Learning

- Additional advice:
 - smaller learning rate for ConvNet weights

Task Transfer Learning

- Same domain, different tasks
- Computer Vision Taskonomy: http://taskonomy.stanford.edu
- What is the relation between *3d* keypoint detection and *depth estimation*?

Task Transfer Learning

- Same domain, different tasks
- Computer Vision Taskonomy:http://taskonomy.stanford.edu
- What is the relation between *3d keypoint detection* and *depth estimation*?
- Is it able to structurally represented?

Task Transfer Learning

Task Similarity Tree Based on Transfering-Out

Transfer Learning from ImageNet?

- Always better?
- ImageNet: 130M
- COCO: 8.6M

Transfer Learning from ImageNet?

17

Transfer Learning from ImageNet?

- With only 1k training image:
 - w/ pretrain: 9.9 AP
 - Random init: 3.5 AP

Rethinking ImageNet Pre-training, Kaiming et al, 2019 18

Label Imbalance

- Semantic Segmentation
- Image Segmentation
- Contour Detection

Label Imbalance

- Reweight the loss by class ratio
- Data Resampling

Model the Long Tail

Model the Long Tail

Model the Long Tail

- Tail distribution
- Still an Open question

(a) Long-tail distribution on the SUN-397 dataset.

Learning to Model the Tail, 2017

• Transfer learning

Learning to Model the Tail, 2017

- Transfer learning
- Meta-learner to learn the "model dynamics"

Reference

• http://cs231n.github.io/understanding-cnn/