CSC413/2516 Lecture 11:
Q-Learning & the Game of Go

Jimmy Ba

B C5C413 /2516 Lecture 11: Q-Learning & the 1/29

Overview

@ Second lecture on reinforcement learning

e Optimize a policy directly, don't represent anything about the
environment

o Today: Q-learning
e Learn an action-value function that predicts future returns

o Case study: AlphaGo uses both a policy network and a value network

I C5C413 /2516 Lecture 11: Q-Learning & the 2/29

Finite and Infinite Horizon

@ Last time: finite horizon MDPs
o Fixed number of steps T per episode
o Maximize expected return R = E,)[r(7)]
@ Now: more convenient to assume infinite horizon

o We can't sum infinitely many rewards, so we need to discount them:
$100 a year from now is worth less than $100 today
e Discounted return

Ge = re+yres1 + 7 reya + -

e Want to choose an action to maximize expected discounted return
o The parameter v < 1 is called the discount factor

@ small v = myopic
o large v = farsighted

I C5C413 /2516 Lecture 11: Q-Learning & the 3/29

Value Function

@ Value function V™(s) of a state s under policy 7: the expected
discounted return if we start in s and follow 7

VW(S) = E[Gt ‘ St = S]
> Y resilse = SI
i=0

@ Computing the value function is generally impractical, but we can try
to approximate (learn) it

=E

@ The benefit is credit assignment: see directly how an action affects
future returns rather than wait for rollouts

I C5C413 /2516 Lecture 11: Q-Learning & the 4/29

Value Function

Start

Goal

Rewards: -1 per time step
Undiscounted (y = 1)
Actions: N, E, S, W
State: current location

I C5C413 /2516 Lecture 11: Q-Learning & the 5/29

Value Function

sanfe] } II 1] il
III
l=ll= oo

I C5C413 /2516 Lecture 11: Q-Learning & the 6 /29

Action-Value Function

@ Can we use a value function to choose actions?

arg maaX I’(St, a) + 'YEP(SH_l \st,at)[VW(StJrl)]

B C5C413/2516 Lecture 11: Q-Learning & the 7/29

Action-Value Function

@ Can we use a value function to choose actions?

arg maaX I’(St, a) + 'YEp(sH_l \st,at)[VW(StJrl)]

@ Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don’t have direct access to!

@ Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Q" (s,a) = E[G;|s: =s,a; = a]

@ Relationship:

V7(s) => w(als)Q"(s,a)

a
@ Optimal action:
argmax Q" (s, a)
a

I C5C413 /2516 Lecture 11: Q-Learning & the 7/29

Bellman Equation

@ The Bellman Equation is a recursive formula for the action-value
function:

Q"(s,a) = r(s,a) + VE (s |s,a) n(a’ |5)[Q7(S',@)]

@ There are various Bellman equations, and most RL algorithms are
based on repeatedly applying one of them.

I C5C413 /2516 Lecture 11: Q-Learning & the 8 /29

-
Optimal Bellman Equation

@ The optimal policy 7* is the one that maximizes the expected
discounted return, and the optimal action-value function Q* is the
action-value function for 7*.

@ The Optimal Bellman Equation gives a recursive formula for Q*:
Q*(s,a) = r(s,a) + VEp(s |s,0) max Q*(sty1,a) st =s,a; = a

@ This system of equations characterizes the optimal action-value
function. So maybe we can approximate @* by trying to solve the
optimal Bellman equation!

I C5C413 /2516 Lecture 11: Q-Learning & the 9/29

-
Q-Learning

Let @ be an action-value function which hopefully approximates Q*.

The Bellman error is the update to our expected return when we
observe the next state s’.

r(se, ar) + 7y max Q(st+1,a) — Q(s¢,at)

inside E in RHS of Bellman eqn

The Bellman equation says the Bellman error is 0 at convergence.

Q-learning is an algorithm that repeatedly adjusts @ to minimize the
Bellman error

Each time we sample consecutive states and actions (s¢, at,S¢+1):

Qlse,ar) = Q(se.ar) +a [rlse,ac) +7max Qser1.2) — Qst.ar)

Bellman error

I C5C413 /2516 Lecture 11: Q-Learning & the 10 / 29

-
Exploration-Exploitation Tradeoff

Notice: Q-learning only learns about the states and actions it visits.

Exploration-exploitation tradeoff: the agent should sometimes pick
suboptimal actions in order to visit new states and actions.
@ Simple solution: e-greedy policy

e With probability 1 — ¢, choose the optimal action according to @
e With probability €, choose a random action

@ Believe it or not, e-greedy is still used today!

I C5C413 /2516 Lecture 11: Q-Learning & the 11 /29

]
Q-Learning

Initialize Q(s, a),Vs € 8§,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S+ S
until S is terminal

I C5C413 /2516 Lecture 11: Q-Learning & the 12 /29

Function Approximation

@ So far, we've been assuming a tabular representation of Q: one entry
for every state/action pair.
@ This is impractical to store for all but the simplest problems, and

doesn't share structure between related states.
@ Solution: approximate @ using a parameterized function, e.g.

o linear function approximation: Q(s,a) =w (s, a)
e compute @ with a neural net

Update @ using backprop:

t < r(st,ar) +7 max Q(st+1,a)

0Q

0« 0+a(t— Q(s,a))%

I C5C413 /2516 Lecture 11: Q-Learning & the 13 /29

Function Approximation with Neural Networks

@ Approximating @ with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning™)

@ They used a very small network by today's standards

32 4x4 filcers Fully-connected linear
output layer

256 hidden units

4xB4x84

il

Stack of 4 previous E Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

@ Main technical innovation: store experience into a replay buffer, and
perform Q-learning using stored experience
e Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!

I C5C413 /2516 Lecture 11: Q-Learning & the 14 / 29

-
Policy Gradient vs. Q-Learning

Policy gradient and Q-learning use two very different choices of
representation: policies and value functions

Advantage of both methods: don't need to model the environment

Pros/cons of policy gradient
e Pro: unbiased estimate of gradient of expected return
e Pro: can handle a large space of actions (since you only need to sample
one)
Con: high variance updates (implies poor sample efficiency)
o Con: doesn't do credit assignment

Pros/cons of Q-learning
e Pro: lower variance updates, more sample efficient
e Pro: does credit assignment
o Con: biased updates since Q function is approximate (drinks its own
Kool-Aid)
o Con: hard to handle many actions (since you need to take the max)

I C5C413 /2516 Lecture 11: Q-Learning & the 15 / 29

N
After the break

After the break: AlphaGo

I C5C413 /2516 Lecture 11: Q-Learning & the 16 / 29

Overview

Some milestones in computer game playing:

@ 1949 — Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically in principle

@ 1951 — Alan Turing writes a chess program that he executes by hand

@ 1956 — Arthur Samuel writes a program that plays checkers better
than he does

@ 1968 — An algorithm defeats human novices at Go
...silence...

@ 1992 — TD-Gammon plays backgammon competitively with the best
human players

@ 1996 — Chinook wins the US National Checkers Championship
@ 1997 — DeepBlue defeats world chess champion Garry Kasparov

After chess, Go was humanity's last stand

I C5C413 /2516 Lecture 11: Q-Learning & the 17 / 29

Go

@ Played on a 19 x 19 board
@ Two players, black and white, each place one stone per turn

o Capture opponent’s stones by surrounding them

I

%

I C5C413 /2516 Lecture 11: Q-Learning & the 18 / 29

Go

What makes Go so challenging:

@ Hundreds of legal moves from any position, many of which are
plausible

@ Games can last hundreds of moves

@ Unlike Chess, endgames are too complicated to solve exactly
(endgames had been a major strength of computer players for games
like Chess)

@ Heavily dependent on pattern recognition

I C5C413 /2516 Lecture 11: Q-Learning & the 19 / 29

Game Trees

@ Each node corresponds to a legal state of the game.
@ The children of a node correspond to possible actions taken by a player.

@ Leaf nodes are ones where we can compute the value since a win/draw
condition was met

\
/

B
i

e

| 4

bl

1

%/
i
Py
%%/

https://www.cs.cmu.edu/~adamchik/156-121/1lectures/Game%20Trees/Game’%20Trees . html

I C5C413 /2516 Lecture 11: Q-Learning & the 20 / 29

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

N
Game Trees

@ As Claude Shannon pointed out in 1949, for games with finite
numbers of states, you can solve them in principle by drawing out the
whole game tree.

@ Ways to deal with the exponential blowup

e Search to some fixed depth, and then estimate the value using an
evaluation function

o Prioritize exploring the most promising actions for each player
(according to the evaluation function)

@ Having a good evaluation function is key to good performance

e Traditionally, this was the main application of machine learning to
game playing

e For programs like Deep Blue, the evaluation function would be a
learned linear function of carefully hand-designed features

I C5C413 /2516 Lecture 11: Q-Learning & the 21 /29

Now for DeepMind’s computer Go player, AlphaGo...

I C5C413 /2516 Lecture 11: Q-Learning & the 22 /29

Supervised Learning to Predict Expert Moves

@ Can a computer play Go without any search?

. C5C413/2516 Lecture 11: Q-Learning & the 23 /29

Supervised Learning to Predict Expert Moves

@ Can a computer play Go without any search?

@ Input: a 19 x 19 ternary (black/white/empty) image — about half the size of
MNIST!

@ Prediction: a distribution over all (legal) next moves

@ Training data: KGS Go Server, consisting of 160,000 games and 29 million
board/next-move pairs

@ Architecture: fairly generic conv net

@ When playing for real, choose the highest-probability move rather than sampling
from the distribution

@ This network, which just predicted expert moves, could beat a fairly strong
program called GnuGo 97% of the time.

o This was amazing — basically all strong game players had been based on
some sort of search over the game tree

B C5C413/2516 Lecture 11: Q-Learning & the 23 /29

|
Self-Play and REINFORCE

@ The problem from training with expert data: there are only 160,000
games in the database. What if we overfit?
@ There is effecitvely infinite data from self-play
e Have the network repeatedly play against itself as its opponent
e For stability, it should also play against older versions of itself
@ Start with the policy which samples from the predictive distribution
over expert moves
e The network which computes the policy is called the policy network
o REINFORCE algorithm: update the policy to maximize the expected
reward r at the end of the game (in this case, r = +1 for win, —1 for
loss)
o If @ denotes the parameters of the policy network, a; is the action at
time t, and s; is the state of the board, and z the rollout of the rest
of the game using the current policy

R = Eaipo(ac | s0) [E[r(2) | st al]
I C5C413 /2516 Lecture 11: Q-Learning & the 24 /29

Monte Carlo Tree Search

@ In 2006, computer Go was revolutionized by a technique called Monte
Carlo Tree Search.

a Selection b Expansion c Evaluation d Backup
maxy @ +ulP) .) R Y . +e
T o I® it = gl
Q +ulP) ./max e be s & o e
LT) it
N | :

- |
(62 e - I G

Silver et al., 2016
@ Estimate the value of a position by simulating lots of rollouts,
i.e. games played randomly using a quick-and-dirty policy
@ Keep track of number of wins and losses for each node in the tree
@ Key question: how to select which parts of the tree to evaluate?

I C5C413 /2516 Lecture 11: Q-Learning & the 25 / 29

Tree Search and Value Networks

Policy network Value network

@ We just saw the policy network.
But AlphaGo also has another Pop (@ls) ”e.(s')

network called a value network.

@ This network tries to predict, for a L °
given position, which player has the i‘
advantage.

@ This is just a vanilla conv net 4
trained with least-squares
regression.

@ Data comes from the board s s
positions and outcomes

encountered during self-play.
Silver et al., 2016

B . C5C413 /2516 Lecture 11: Q-Learning & the 26 / 29

-
Policy and Value Networks

@ AlphaGo combined the policy and value networks with Monte Carlo
Tree Search

@ Policy network used to simulate rollouts

@ Value network used to evaluate leaf positions

I C5C413 /2516 Lecture 11: Q-Learning & the 27 /29

-
AlphaGo Timeline

e Summer 2014 — start of the project (internship project for Uof T
grad student Chris Maddison)

@ October 2015 — AlphaGo defeats European champion

o First time a computer Go player defeated a human professional without
handicap — previously believed to be a decade away

@ January 2016 — publication of Nature article “Mastering the game
of Go with deep neural networks and tree search”

@ March 2016 — AlphaGo defeats gradmaster Lee Sedol

@ October 2017 — AlphaGo Zero far surpasses the original AlphaGo
without training on any human data

o Decemter 2017 — it beats the best chess programs too, for good
measure

I C5C413 /2516 Lecture 11: Q-Learning & the 28 / 29

-
AlphaGo

Further reading:

@ Silver et al., 2016. Mastering the game of Go with deep neural
networks and tree search. Nature http://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html

@ Scientific American: https://www.scientificamerican.com/
article/how-the-computer-beat-the-go-master/

@ Talk by the DeepMind CEO:
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=
PLQYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

I C5C413 /2516 Lecture 11: Q-Learning & the 29 / 29

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

