
CSC413/2516 Lecture 10:
Generative Models & Reinforcement Learning

Jimmy Ba

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 1 / 28



Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (last lecture)

Reversible architectures (this lecture)

Variational autoencoders (this lecture)

All four approaches have different pros and cons.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 2 / 28



Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 3 / 28



Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Compression (i.e. reducing the file size)

Note: this requires a VAE, not just an ordinary autoencoder.

Learn abstract features in an unsupervised way so you can apply them
to a supervised task

Unlabled data can be much more plentiful than labeled data

Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 4 / 28



Principal Component Analysis (optional)

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ‖x− x̃‖2

This network computes x̃ = UVx, which is a
linear function.

If K ≥ D, we can choose U and V such that
UV is the identity. This isn’t very interesting.

But suppose K < D:

V maps x to a K -dimensional space, so it’s doing dimensionality
reduction.
The output must lie in a K -dimensional subspace, namely the column
space of U.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 5 / 28



Principal Component Analysis (optional)

Review from CSC311: linear
autoencoders with squared error
loss are equivalent to Principal
Component Analysis (PCA).

Two equivalent formulations:

Find the subspace that
minimizes the reconstruction
error.
Find the subspace that
maximizes the projected
variance.

The optimal subspace is
spanned by the dominant
eigenvectors of the empirical
covariance matrix.

“Eigenfaces”

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 6 / 28



Deep Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 7 / 28



Deep Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 8 / 28



Deep Autoencoders

Some limitations of autoencoders

They’re not generative models, so they don’t define a distribution
How to choose the latent dimension?

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 9 / 28



Observation Model

Consider training a generator network with maximum likelihood.

p(x) =

∫
p(z)p(x | z)dz

One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

The model only generates samples over a low-dimensional sub-manifold
of X .

Solution: define a noisy observation
model, e.g.

p(x | z) = N (x;Gθ(z), ηI),

where Gθ is the function computed by
the decoder with parameters θ.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 10 / 28



Observation Model

At least p(x) =
∫
p(z)p(x | z)dz is well-defined, but how can we

compute it?
Integration, according to XKCD:

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 11 / 28



Observation Model

At least p(x) =
∫
p(z)p(x | z)dz is well-defined, but how can we

compute it?

The decoder function Gθ(z) is very complicated, so there’s no hope of
finding a closed form.

Instead, we will try to maximize a lower bound on log p(x).

The math is essentially the same as in the EM algorithm from CSC411.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 12 / 28



Variational Inference

We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X ,

E[h(X )] ≥ h(E[X ])

Therefore, if h is concave (i.e. −h is
convex),

E[h(X )] ≤ h(E[X ])

The function log z is concave.
Therefore,

E[logX ] ≤ logE[X ]

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 13 / 28



Variational Inference

Suppose we have some distribution q(z). (We’ll see later where this
comes from.)

We use Jensen’s Inequality to obtain the lower bound.

log p(x) = log

∫
p(z) p(x|z)dz

= log

∫
q(z)

p(z)

q(z)
p(x|z)dz

≥
∫

q(z) log

[
p(z)

q(z)
p(x|z)

]
dz (Jensen’s Inequality)

= Eq

[
log

p(z)

q(z)

]
+ Eq [log p(x|z)]

We’ll look at these two terms in turn.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 14 / 28



Variational Inference

The first term we’ll look at is Eq [log p(x|z)]

Since we assumed a Gaussian observation model,

log p(x|z) = logN (x;Gθ(z), ηI)

= log

[
1

(2πη)D/2
exp

(
− 1

2η
‖x− Gθ(z)‖2

)]
= − 1

2η
‖x− Gθ(z)‖2 + const

So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 15 / 28



Variational Inference

The second term is Eq

[
log p(z)

q(z)

]
.

This is just −DKL(q(z)‖p(z)), where DKL is the Kullback-Leibler
(KL) divergence

DKL(q(z)‖p(z)) , Eq

[
log

q(z)

p(z)

]
KL divergence is a widely used measure of distance between probability
distributions, though it doesn’t satisfy the axioms to be a distance
metric.
More details in tutorial.

Typically, p(z) = N (0, I). Hence, the KL term encourages q to be
close to N (0, I).

We’ll give the KL term a much more interesting interpretation when
we discuss Bayesian neural nets.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 16 / 28



Variational Inference

Hence, we’re trying to maximize the variational lower bound, or
variational free energy:

log p(x) ≥ F(θ, q) = Eq [log p(x|z)]−DKL(q‖p).

The term “variational” is a historical accident: “variational inference”
used to be done using variational calculus, but this isn’t how we train
VAEs.

We’d like to choose q to make the bound as tight as possible.

It’s possible to show that the gap is given by:

log p(x)−F(θ, q) = DKL(q(z)‖p(z|x)).

Therefore, we’d like q to be as close as possible to the posterior
distribution p(z|x).

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 17 / 28



Let’s think about the role of each of the two terms.

The reconstruction term

Eq[log p(x|z)] = − 1

2σ2
Eq[‖x− Gθ(z)‖2] + const

is minimized when q is a point mass on

z∗ = arg min
z
‖x− Gθ(z)‖2.

But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces q to be more spread out.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 18 / 28



Reparameterization Trick

To fit q, let’s assign it a parametric form, in particular a Gaussian
distribution: q(z) = N (z;µ,Σ), where µ = (µ1, . . . , µK ) and
Σ = diag(σ21, . . . , σ

2
K ).

In general, it’s hard to differentiate through an expectation. But for
Gaussian q, we can apply the reparameterization trick:

zi = µi + σiεi ,

where εi ∼ N (0, 1).

Hence,
µi = zi σi = ziεi .

This is exactly analogous to how we derived the backprop rules for
droopout.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 19 / 28



Amortization

This suggests one strategy for learning the decoder. For each training
example,

1 Fit q to approximate the posterior for the current x by doing many
steps of gradient ascent on F .

2 Update the decoder parameters θ with gradient ascent on F .

Problem: this requires an expensive iterative procedure for every
training example, so it will take a long time to process the whole
training set.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 20 / 28



Amortization

Idea: amortize the cost of inference by
learning an inference network which
predicts (µ,Σ) as a function of x.

The outputs of the inference net are µ
and logσ. (The log representation
ensures σ > 0.)

If σ ≈ 0, then this network essentially
computes z deterministically, by way of
µ.

But the KL term encourages σ > 0,
so in general z will be noisy.

The notation q(z|x) emphasizes that q
depends on x, even though it’s not
actually a conditional distribution.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 21 / 28



Amortization

Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The
inference net is like an encoder.

Hence, this architecture is known as a
variational autoencoder (VAE).

The parameters of both the encoder
and decoder networks are updated using
a single pass of ordinary backprop.

The reconstruction term corresponds
to squared error ‖x− x̃‖2, like in an
ordinary VAE.
The KL term regularizes the
representation by encouraging z to be
more stochastic.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 22 / 28



VAEs vs. Other Generative Models

In short, a VAE is like an autoencoder, except that it’s also a
generative model (defines a distribution p(x)).
Unlike autoregressive models, generation only requires one forward
pass.
Unlike reversible models, we can fit a low-dimensional latent
representation. We’ll see we can do interesting things with this...

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 23 / 28



Class-Conditional VAE

So far, we haven’t used the labels y . A
class-conditional VAE provides the
labels to both the encoder and the
decoder.

Since the latent code z no longer has to
model the image category, it can focus
on modeling the stylistic features.

If we’re lucky, this lets us disentangle
style and content. (Note:
disentanglement is still a dark art.)

See Kingma et al., “Semi-supervised
learning with deep generative models.”

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 24 / 28



Class-Conditional VAE

By varying two latent dimensions (i.e. dimensions of z) while holding
y fixed, we can visualize the latent space.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 25 / 28



Class-Conditional VAE

By varying the label y while holding z fixed, we can solve image
analogies.

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 26 / 28



Latent Space Interpolations

You can often get interesting results by interpolating between two
vectors in the latent space:

Ha and Eck, “A neural representation of sketch drawings”

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 27 / 28



Latent Space Interpolations

Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 28 / 28

https://magenta.tensorflow.org/music-vae

