CSC413/2516 Lecture 10:
Generative Models & Reinforcement Learning

Jimmy Ba

B 2 C5C413 /2516 Lecture 10: Generative Model 1/ 40

Overview

@ In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.

@ We have seen a few approaches to generative modeling:

o Autoregressive models (Lectures 3, 7, and 8)
o Generative adversarial networks (last lecture)
o Reversible architectures (this lecture)

o Variational autoencoders (this lecture)

All four approaches have different pros and cons.

B 2 C5C413 /2516 Lecture 10: Generative Model 2/40

Generator Networks

@ Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

@ The generator network computes a differentiable function G mapping
z to an x in data space

generated distribution
A

-

true data distribution

p(x)
unit gaussian
generative
O model .
2 || (neural net) « floss| 7
image space image space
https://blog.openai.com/generative-models/

B 2 C5C413 /2516 Lecture 10: Generative Model 3/40

https://blog.openai.com/generative-models/

Generator Networks

Each dimension of the code
vector is sampled independently
from a simple distribution,
e.g. Gaussian or uniform.

This is fed to a
(deterministic) The network
generator network. outputs an image.

@ We have seen how to learn generator networks by training a
discriminator in GANs.

@ Problem:

o Learning can be very unstable. Need to tune many hyperparameters.
o No direct evaluation metric to assess the trained generator networks.

@ Idea: learn the generator directly via change of variables. (Calculus!)

B 2 C5C413 /2516 Lecture 10: Generative Model 4 /40

Change of Variables Formula

@ Let f denote a differentiable, bijective mapping from space Z to
space X. (l.e., it must be 1-to-1 and cover all of X.)

@ Since f defines a one-to-one correspondence between values z € Z
and x € X, we can think of it as a change-of-variables transformation.

o Change-of-Variables Formula from probability theory: if x = f(z),

then
Oox
det | —
) (8z)
@ Intuition for the Jacobian term:

/740N

small B:E/Bz large dx/0z,
high density p(z low density p(z)

B 2 C5C413 /2516 Lecture 10: Generative Model 5 /40

-1

px(x) = pz(z)

Change of Variables Formula

@ Suppose we have a generator network which computes the function f.
It's tempting to apply the change-of-variables formula in order to
compute the density px(x).

e le., compute z = f1(x)

@ Problems?

B 2 C5C413 /2516 Lecture 10: Generative Model 6 /40

Change of Variables Formula

@ Suppose we have a generator network which computes the function f.
It's tempting to apply the change-of-variables formula in order to
compute the density px(x).

e le., compute z = f1(x)

-1

Ox
det | —
) (8z)
@ Problems?

o It needs to be differentiable, so that the Jaobian 0x/0z is defined.
e The mapping f needs to be invertible, with an easy-to-compute inverse.
e We need to be able to compute the (log) determinant.
e Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.

B 2 C5C413 /2516 Lecture 10: Generative Model 6 /40

Reversible Blocks

@ Now let's define a reversible block which is invertible and has a
tractable determinant.

@ Such blocks can be composed.

o Inversion: f~1 = 7‘_10---07‘,:1 f=

Ir
fa
fko“'0f1 X
o Determinants: axk| _} Ox ‘ 3Xz‘|3x1|
fi

axk,1 8x1

B 2 C5C413 /2516 Lecture 10: Generative Model 7/40

Reversible Blocks

@ Recall the residual blocks:

y =x+F(x)

@ Reversible blocks are a variant of F(x) d:I

residual blocks. Divide the units into
two groups, X1 and X». X

y1 = x1 + F(x2)

Y2 = X2
@ Inverting a reversible block:

X2 =Y¥2
x1 =y1 — F(x2)

B 2 C5C413 /2516 Lecture 10: Generative Model 8 /40

Reversible Blocks

Composition of two reversible blocks, but with x; and x swapped:

Y1 Yo
o Forward: i i
%
y1 = x1 + F(x2) 4
y2 = x2 + G(y1)
o Backward:
¢
x2 =y2 — G(y1)
x1 =y1 — F(x2)

B 2 C5C413 /2516 Lecture 10: Generative Model 9/40

Volume Preservation

@ It remains to compute the log determinant of the Jacobian.

@ The Jacobian of the reversible block:

y1 = X1 + F(x2) 63’_<| gf;)
0 1

Y2 = X2 Ox
@ This is an upper triangular matrix. The determinant of an upper

triangular matrix is the product of the diagonal entries, or in this
case, 1.

@ Since the determinant is 1, the mapping is said to be volume
preserving.

B 2 C5C413 /2516 Lecture 10: Generative Model 10 / 40

Nonlinear Independent Components Estimation

@ We've just defined the reversible block.
e Easy to invert by subtracting rather than adding the residual function.
e The determinant of the Jacobian is 1.

@ Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

@ We can compute the likelihood function using the change-of-variables

formula:
ox
det <8z>

@ We can train this model using maximum likelihood. l.e., given a
dataset {x(M, ... x(M} we maximize the likelihood

-1

px(x) = pz(z) = pz(2)

N . N .
[T px () =TT pz(F~1(x))
i=1 i=1

B 2 C5C413 /2516 Lecture 10: Generative Model 11 / 40

Nonlinear Independent Components Estimation

@ Likelihood:
px(x) = pz(2z) = pz(f*(x))
@ Remember, py is a simple, fixed distribution (e.g. independent
Gaussians)

e Intuition: train the network such that f~! maps each data point to a
high-density region of the code vector space Z.
e Without constraints on f, it could map everything to 0, and this
likelihood objective would make no sense.
e But it can't do this because it's volume preserving.

B 2 C5C413 /2516 Lecture 10: Generative Model 12 / 40

Nonlinear Independent Components Estimation

Data space & Latent space Z
ol
. e
£ 3
5 E = ——
& xé E4 .\ = 3.
. 3
R
&~

Dinh et al.,:2016. Density estimation using RealNVP.

B 2 C5C413 /2516 Lecture 10: Generative Model 13 / 40

Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

ImageNet celebrities bedrooms

Dinh et al., 2016. Density estimation using RealNVP.

Jimmy Ba CSC413/2516 Lecture 10: Generative Model 14 / 40

|
RevNets (optional)

@ A side benefit of reversible blocks: you don't need to store the
activations in memory to do backprop, since you can reverse the
computation.

o l.e., compute the activations as you need them, moving backwards
through the computation graph.

@ Notice that reversible blocks look a lot like residual blocks.

@ We recently designed a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

e Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!

o Gomez et al., NIPS 2017. “The revesible residual network: backrpop
without storing activations” .

B 2 C5C413 /2516 Lecture 10: Generative Model 15 / 40

Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

by bR B B B) o] B
£ DY P R e

oA AR AN

Ha and Eck, “A neural representation of sketch drawings”

Jimmy Ba CSC413/2516 Lecture 10: Generative Model 16 / 40

Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae

B 2 C5C413 /2516 Lecture 10: Generative Model 17 / 40

https://magenta.tensorflow.org/music-vae

Trade-offs of Generative Approaches

@ So far, we have seen four different approaches:

o Autoregressive models (Lectures 3, 7, and 8)
o Generative adversarial networks (last lecture)
o Reversible architectures (this lecture)

e Variational autoencoders (optional)

@ They all have their own pro and con. We often pick a method based
on our application needs.

@ Some considerations for computer vision applications:

e Do we need to evaluate log likelihood of new data?

e Do we prefer good samples over evaluation metric?

e How imporant is representation learning, i.e. meaningful code vectors?
e How much computational resource can we spent?

B 2 C5C413 /2516 Lecture 10: Generative Model 18 / 40

Trade-offs of Generative Approaches

@ In summary:
| Log-likelihood | Sample | Representation | Computation

Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)
Reversible Tractable Poor Poor O(#layers)
VAEs (optional) Tractable* Poor Good O(#layers)
@ There is no silver bullet in generative modeling.
19 / 40

CSC413/2516 Lecture 10: Generative Model

N
After the break

After the break: Reinforcement Learning: Policy Gradient

B 2 C5C413 /2516 Lecture 10: Generative Model 20 / 40

Overview

Most of this course was about supervised learning, plus a little
unsupervised learning.

Reinforcement learning:

e Middle ground between supervised and unsupervised learning
e An agent acts in an environment and receives a reward signal.

Today: policy gradient (directly do SGD over a stochastic policy
using trial-and-error)

@ Next lecture: combine policies and Q-learning

B 2 C5C413 /2516 Lecture 10: Generative Model 21/ 40

Reinforcement learning

e An agent interacts with an environment (e.g. game of Breakout)
@ In each time step t,
o the agent receives observations (e.g. pixels) which give it information
about the state s; (e.g. positions of the ball and paddle)
o the agent picks an action a; (e.g. keystrokes) which affects the state
@ The agent periodically receives a reward r(s;,a;), which depends on
the state and action (e.g. points)
@ The agent wants to learn a policy mg(a; | st)
e Distribution over actions depending on the current state and
parameters @

B 2 C5C413 /2516 Lecture 10: Generative Model 22/ 40

Markov Decision Processes

@ The environment is represented as a Markov decision process M.

@ Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

@ Components of an MDP:

initial state distribution p(so)

policy mo(a; | s:)

transition distribution p(s¢11 | s, at)

reward function r(s;,a;)

@ Assume a fully observable environment, i.e. s; can be observed directly
e Rollout, or trajectory 7 = (so,ao,S1,a1,...,ST,aT)
@ Probability of a rollout

p(7) = p(so) me(ao | so) p(s1 |s0,a0) - -~ p(sT|sT—1,a7-1) me(aT [sT)

B 2 C5C413 /2516 Lecture 10: Generative Model 23 / 40

Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

State: positions, angles, and velocities of the joints

Actions: apply forces to the joints

Reward: distance from starting point

Policy: output of an ordinary MLP, using the state as input
More environments: https://gym.openai.com/envs/#mujoco

B 2 C5C413 /2516 Lecture 10: Generative Model 24 / 40

https://gym.openai.com/envs/#mujoco

Markov Decision Processes

@ Return for a rollout: r(7) = Ztho r(s¢, at)
e Note: we're considering a finite horizon T, or number of time steps;
we'll consider the infinite horizon case later.
® Goal: maximize the expected return, R = E,[r(7)]
@ The expectation is over both the environment’'s dynamics and the
policy, but we only have control over the policy.
@ The stochastic policy is important, since it makes R a continuous
function of the policy parameters.
e Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)

return expected

return

0 0

deterministic policies stochastic policies

B 2 C5C413 /2516 Lecture 10: Generative Model 25 / 40

|
REINFORCE

o REINFORCE is an elegant algorithm for maximizing the expected
return R = Ep(7) [r(7)].
@ Intuition: trial and error

e Sample a rollout 7. If you get a high reward, try to make it more likely.
If you get a low reward, try to make it less likely.

@ Interestingly, this can be seen as stochastic gradient ascent on R.

B 2 C5C413 /2516 Lecture 10: Generative Model 26 / 40

|
REINFORCE

@ Recall the derivative formula for log:

90 p(’r)
p(T)

o Gradient of the expected return:
0
a0 1= 55 Z (7
= Z r(T)f
= Zr(r % log p(7)

— By |r(r) g o (7))

aaglgp()—

A 3p(r) = pl7) 55 0 (7)

o Compute stochastic estimates of this expectation by sampling rollouts.

CSC413/2516 Lecture 10: Generative Model

27 / 40

|
REINFORCE

o For reference:
0 0
59 e [M(T)] = Ep(ry (1) 55 log p(7)
o If you get a large reward, make the rollout more likely. If you get a

small reward, make it less likely.
@ Unpacking the REINFORCE gradient:

P P T T
20 log p(7) = % log {p(so) gwe(at |'s¢) EP(St |se—1, at_l)]
P T
= % |ogg7r9(at ‘ St)

LI
= ; 2 log mo(a: | st)

@ Hence, it tries to make all the actions more likely or less likely,
depending on the reward. l.e., it doesn’t do credit assignment.
e This is a topic for next lecture.

B 2 C5C413 /2516 Lecture 10: Generative Model 28 / 40

REINFORCE
Repeat forever:
Sample a rollout 7 = (sg, ao, s1,a1,...,5T,aT)
r(r) < Zk of(Skvak)
Fort=0,...,T:

0«6+ OLF(T)% log mo(a: | st)

@ Observation: actions should only be reinforced based on future
rewards, since they can’t possibly influence past rewards.

@ You can show that this still gives unbiased gradient estimates.

Repeat forever:

Sample a rollout 7 = (sg, o, s1,a1,...,ST,aT)
Fort=20,...,T:

rl‘(T) <~ ZkT:t r(skaak)

0+ 0 + Oért(T)% |og7rg(at | St)

B 2 C5C413 /2516 Lecture 10: Generative Model 29 / 40

Optimizing Discontinuous Objectives

o A classification task under RL formulation
one time step
state x: an image
action a: a digit class
reward r(x,a): 1 if correct, O if wrong
policy m(a|x): a distribution over categories
o Compute using an MLP with softmax outputs — this is a policy network

B 2 C5C413 /2516 Lecture 10: Generative Model 30 / 40

Optimizing Discontinuous Objectives

cost cost

0 0

Non-differentiable: OK Discontinuous: not OK

@ Original solution: use a surrogate loss function, e.g.
logistic-cross-entropy

@ RL formulation: in each episode, the agent is shown an image, guesses
a digit class, and receives a reward of 1 if it's right or 0 if it's wrong

@ We'd never actually do it this way, but it will give us an interesting
comparison with backprop

B 2 C5C413 /2516 Lecture 10: Generative Model 31 /40

Optimizing Discontinuous Objectives

@ Let z, denote the logits, yx denote the softmax output, t the integer
target, and tx the target one-hot representation.
e To apply REINFORCE, we sample a ~ mg(- | x) and apply:

06— 0+ ar(a,t)2 log mg(a | x)

00
=60+ar(a t)E lo
-) 89 gya
0
=0+ ar(@,t) Y (3 — i) 52k
k

@ Compare with the logistic regression SGD update:

0
0(—0—{'0[870 IOgyt

0
—0+a) (t- Yk) 5 2k
K

32 /40

CSC413/2516 Lecture 10: Generative Model

N
Reward Baselines

@ For reference:

0« 6+ ar(a,t)% log mg(a|x)

@ Clearly, we can add a constant offset to the reward, and we get an
equivalent optimization problem.
@ Behavior if r = 0 for wrong answers and r = 1 for correct answers
e wrong: do nothing
e correct: make the action more likely
o If r =10 for wrong answers and r = 11 for correct answers
e wrong: make the action more likely
e correct: make the action more likely (slightly stronger)
o If r = —10 for wrong answers and r = —9 for correct answers

e wrong: make the action less likely
e correct: make the action less likely (slightly weaker)

B 2 C5C413 /2516 Lecture 10: Generative Model 33 /40

Reward Baselines

@ Problem: the REINFORCE update depends on arbitrary constant

factors added to the reward.
@ Observation: we can subtract a baseline b from the reward without
biasing the gradient.

Epry [(r(7) —)80 log p(7)| = T) - r(r)6‘9 log p(’T) — bE {6‘9 log p(’T):|

N
= Ey(r r(T)%logp(T) *bzp 80 log p(7)

~ By |1(7) (,fi, 0 p(r)| ~ b 150(7)

[0

e We'd like to pick a baseline such that good rewards are positive and
bad ones are negative.

e E[r(7)] is a good choice of baseline, but we can't always compute it
easily. There's lots of research on trying to approximate it.

B 2 C5C413 /2516 Lecture 10: Generative Model 34 / 40

N
More Tricks

@ We left out some more tricks that can make policy gradients work a
lot better.
e Natural policy gradient corrects for the geometry of the space of
policies, preventing the policy from changing too quickly.
o Rather than use the actual return, evaluate actions based on estimates
of future returns. This is a class of methods known as actor-critic,

which we'll touch upon next lecture.
@ Trust region policy optimization (TRPO) and proximal policy
optimization (PPO) are modern policy gradient algorithms which are
very effective for continuous control problems.

B 2 C5C413 /2516 Lecture 10: Generative Model 35 / 40

Evolution Strategies

@ REINFORCE can handle discontinuous dynamics and reward
functions, but it requires a differentiable network since it computes
% log mg(at | st)

e Evolution strategies (ES) take the policy gradient idea a step further,
and avoid backprop entirely.

@ ES can use deterministic policies. It randomizes over the choice of
policy rather than over the choice of actions.

o l.e., sample a random policy from a distribution p, (@) parameterized
by 7 and apply the policy gradient trick

3B, 7 (O)] = Bop, | r7(6)) 5 102 2(6)

@ The neural net architecture itself can be discontinuous.

B 2 C5C413 /2516 Lecture 10: Generative Model 36 / 40

Evolution Strategies

Algorithm 1 Evolution Strategies

: Input: Learning rate «, noise standard deviation o, initial policy parameters 6y
s fort=0,1,2,... do

Sample €1, ...€, ~N(0,I)

Compute returns F; = F(0; + o¢;) fori =1,...,n

Set 93+1 — 6+ a% :?:1 Fie;
end for

AN e

https://arxiv.org/pdf/1703.03864.pdf

B 2 C5C413 /2516 Lecture 10: Generative Model 37 /40

https://arxiv.org/pdf/1703.03864.pdf

Evolution Strategies

@ The IEEE floating point standard is nonlinear, since small enough
numbers get truncated to zero.

sign exponent (8 hits) fraction (23 bits)
| T I

ST [Ee S S [T saIaTs] = o 1565
3l 30 2322 (bit index) 0

le-38

@ This acts as a discontinuous activation
function, which ES is able to handle.

@ ES was able to train a good MNIST
classifier using a “linear” activation
function. -

4

float32
°

@ https://blog.openai.com/ "
nonlinear-computation-in-linear-:

-4 -2 0 2 4
actual number le-38

B 2 C5C413 /2516 Lecture 10: Generative Model 38 / 40

https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/

Discussion

@ What's so great about backprop and gradient descent?

o Backprop does credit assignment — it tells you exactly which
activations and parameters should be adjusted upwards or downwards
to decrease the loss on some training example.

o REINFORCE doesn't do credit assignment. If a rollout happens to be
good, all the actions get reinforced, even if some of them were bad.

e Reinforcing all the actions as a group leads to random walk behavior.

B 2 C5C413 /2516 Lecture 10: Generative Model 39 / 40

Discussion

@ Why policy gradient?

e Can handle discontinuous cost functions
e Don't need an explicit model of the environment, i.e. rewards and
dynamics are treated as black boxes
@ Policy gradient is an example of model-free reinforcement learning,
since the agent doesn't try to fit a model of the environment
o Almost everyone thinks model-based approaches are needed for Al, but
nobody has a clue how to get it to work

B 2 C5C413 /2516 Lecture 10: Generative Model 40 / 40

