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Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

We have seen a few approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)
Generative adversarial networks (last lecture)
Reversible architectures (this lecture)
Variational autoencoders (this lecture)

All four approaches have different pros and cons.
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Generator Networks

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space

https://blog.openai.com/generative-models/
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Generator Networks

We have seen how to learn generator networks by training a
discriminator in GANs.

Problem:

Learning can be very unstable. Need to tune many hyperparameters.
No direct evaluation metric to assess the trained generator networks.

Idea: learn the generator directly via change of variables. (Calculus!)
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Change of Variables Formula

Let f denote a differentiable, bijective mapping from space Z to
space X . (I.e., it must be 1-to-1 and cover all of X .)

Since f defines a one-to-one correspondence between values z ∈ Z
and x ∈ X , we can think of it as a change-of-variables transformation.

Change-of-Variables Formula from probability theory: if x = f (z),
then

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Intuition for the Jacobian term:
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Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Problems?

It needs to be differentiable, so that the Jaobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.
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Reversible Blocks

Now let’s define a reversible block which is invertible and has a
tractable determinant.

Such blocks can be composed.

Inversion: f −1 = f −1
1 ◦ · · · ◦ f −1

k

Determinants:
∣∣∂xk
∂z

∣∣ =
∣∣ ∂xk
∂xk−1

∣∣ · · · ∣∣∂x2∂x1

∣∣∣∣∂x1
∂z

∣∣
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Reversible Blocks

Recall the residual blocks:

y = x + F(x)

Reversible blocks are a variant of
residual blocks. Divide the units into
two groups, x1 and x2.

y1 = x1 + F(x2)

y2 = x2

Inverting a reversible block:

x2 = y2

x1 = y1 −F(x2)
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Reversible Blocks

Composition of two reversible blocks, but with x1 and x2 swapped:

Forward:

y1 = x1 + F(x2)

y2 = x2 + G(y1)

Backward:

x2 = y2 − G(y1)

x1 = y1 −F(x2)

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 9 / 40



Volume Preservation

It remains to compute the log determinant of the Jacobian.

The Jacobian of the reversible block:

y1 = x1 + F(x2)

y2 = x2

∂y

∂x
=

(
I ∂F

∂x2
0 I

)
This is an upper triangular matrix. The determinant of an upper
triangular matrix is the product of the diagonal entries, or in this
case, 1.

Since the determinant is 1, the mapping is said to be volume
preserving.
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Nonlinear Independent Components Estimation

We’ve just defined the reversible block.
Easy to invert by subtracting rather than adding the residual function.
The determinant of the Jacobian is 1.

Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

We can compute the likelihood function using the change-of-variables
formula:

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1 = pZ (z)

We can train this model using maximum likelihood. I.e., given a
dataset {x(1), . . . , x(N)}, we maximize the likelihood

N∏
i=1

pX (x(i)) =
N∏
i=1

pZ (f −1(x(i)))
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Nonlinear Independent Components Estimation

Likelihood:
pX (x) = pZ (z) = pZ (f −1(x))

Remember, pZ is a simple, fixed distribution (e.g. independent
Gaussians)

Intuition: train the network such that f −1 maps each data point to a
high-density region of the code vector space Z.

Without constraints on f , it could map everything to 0, and this
likelihood objective would make no sense.
But it can’t do this because it’s volume preserving.
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Nonlinear Independent Components Estimation

Dinh et al., 2016. Density estimation using RealNVP.
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Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

Dinh et al., 2016. Density estimation using RealNVP.
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RevNets (optional)

A side benefit of reversible blocks: you don’t need to store the
activations in memory to do backprop, since you can reverse the
computation.

I.e., compute the activations as you need them, moving backwards
through the computation graph.

Notice that reversible blocks look a lot like residual blocks.

We recently designed a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!
Gomez et al., NIPS 2017. “The revesible residual network: backrpop
without storing activations”.
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Latent Space Interpolations

You can often get interesting results by interpolating between two
vectors in the latent space:

Ha and Eck, “A neural representation of sketch drawings”
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Latent Space Interpolations

Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae
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Trade-offs of Generative Approaches

So far, we have seen four different approaches:

Autoregressive models (Lectures 3, 7, and 8)
Generative adversarial networks (last lecture)
Reversible architectures (this lecture)
Variational autoencoders (optional)

They all have their own pro and con. We often pick a method based
on our application needs.

Some considerations for computer vision applications:

Do we need to evaluate log likelihood of new data?
Do we prefer good samples over evaluation metric?
How imporant is representation learning, i.e. meaningful code vectors?
How much computational resource can we spent?
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Trade-offs of Generative Approaches

In summary:

Log-likelihood Sample Representation Computation

Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)

Reversible Tractable Poor Poor O(#layers)
VAEs (optional) Tractable* Poor Good O(#layers)

There is no silver bullet in generative modeling.
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After the break

After the break: Reinforcement Learning: Policy Gradient
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Overview

Most of this course was about supervised learning, plus a little
unsupervised learning.

Reinforcement learning:

Middle ground between supervised and unsupervised learning
An agent acts in an environment and receives a reward signal.

Today: policy gradient (directly do SGD over a stochastic policy
using trial-and-error)

Next lecture: combine policies and Q-learning

Jimmy Ba CSC413/2516 Lecture 10: Generative Models & Reinforcement Learning 21 / 40



Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)
In each time step t,

the agent receives observations (e.g. pixels) which give it information
about the state st (e.g. positions of the ball and paddle)
the agent picks an action at (e.g. keystrokes) which affects the state

The agent periodically receives a reward r(st , at), which depends on
the state and action (e.g. points)
The agent wants to learn a policy πθ(at | st)

Distribution over actions depending on the current state and
parameters θ
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Markov Decision Processes

The environment is represented as a Markov decision process M.

Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

Components of an MDP:

initial state distribution p(s0)
policy πθ(at | st)
transition distribution p(st+1 | st , at)
reward function r(st , at)

Assume a fully observable environment, i.e. st can be observed directly

Rollout, or trajectory τ = (s0, a0, s1, a1, . . . , sT , aT )

Probability of a rollout

p(τ) = p(s0)πθ(a0 | s0) p(s1 | s0, a0) · · · p(sT | sT−1, aT−1)πθ(aT | sT )
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Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

State: positions, angles, and velocities of the joints

Actions: apply forces to the joints

Reward: distance from starting point

Policy: output of an ordinary MLP, using the state as input

More environments: https://gym.openai.com/envs/#mujoco
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Markov Decision Processes

Return for a rollout: r(τ) =
∑T

t=0 r(st , at)
Note: we’re considering a finite horizon T , or number of time steps;
we’ll consider the infinite horizon case later.

Goal: maximize the expected return, R = Ep(τ)[r(τ)]

The expectation is over both the environment’s dynamics and the
policy, but we only have control over the policy.
The stochastic policy is important, since it makes R a continuous
function of the policy parameters.

Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)
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REINFORCE

REINFORCE is an elegant algorithm for maximizing the expected
return R = Ep(τ) [r(τ)].

Intuition: trial and error

Sample a rollout τ . If you get a high reward, try to make it more likely.
If you get a low reward, try to make it less likely.

Interestingly, this can be seen as stochastic gradient ascent on R.
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REINFORCE

Recall the derivative formula for log:

∂

∂θ
log p(τ) =

∂
∂θp(τ)

p(τ)
=⇒ ∂

∂θ
p(τ) = p(τ)

∂

∂θ
log p(τ)

Gradient of the expected return:

∂

∂θ
Ep(τ) [r(τ)] =

∂

∂θ

∑
τ

r(τ)p(τ)

=
∑
τ

r(τ)
∂

∂θ
p(τ)

=
∑
τ

r(τ)p(τ)
∂

∂θ
log p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
Compute stochastic estimates of this expectation by sampling rollouts.
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REINFORCE

For reference:
∂

∂θ
Ep(τ) [r(τ)] = Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
If you get a large reward, make the rollout more likely. If you get a
small reward, make it less likely.
Unpacking the REINFORCE gradient:

∂

∂θ
log p(τ) =

∂

∂θ
log

[
p(s0)

T∏
t=0

πθ(at | st)
T∏
t=1

p(st | st−1, at−1)

]

=
∂

∂θ
log

T∏
t=0

πθ(at | st)

=
T∑
t=0

∂

∂θ
log πθ(at | st)

Hence, it tries to make all the actions more likely or less likely,
depending on the reward. I.e., it doesn’t do credit assignment.

This is a topic for next lecture.
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REINFORCE

Repeat forever:

Sample a rollout τ = (s0, a0, s1, a1, . . . , sT , aT )

r(τ)←
∑T

k=0 r(sk , ak)
For t = 0, . . . ,T :

θ ← θ + αr(τ) ∂
∂θ

log πθ(at | st)

Observation: actions should only be reinforced based on future
rewards, since they can’t possibly influence past rewards.

You can show that this still gives unbiased gradient estimates.

Repeat forever:

Sample a rollout τ = (s0, a0, s1, a1, . . . , sT , aT )
For t = 0, . . . ,T :

rt(τ)←
∑T

k=t r(sk , ak)
θ ← θ + αrt(τ) ∂

∂θ
log πθ(at | st)
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Optimizing Discontinuous Objectives

A classification task under RL formulation

one time step
state x: an image
action a: a digit class
reward r(x, a): 1 if correct, 0 if wrong
policy π(a | x): a distribution over categories

Compute using an MLP with softmax outputs – this is a policy network
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Optimizing Discontinuous Objectives

Original solution: use a surrogate loss function, e.g.
logistic-cross-entropy

RL formulation: in each episode, the agent is shown an image, guesses
a digit class, and receives a reward of 1 if it’s right or 0 if it’s wrong

We’d never actually do it this way, but it will give us an interesting
comparison with backprop
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Optimizing Discontinuous Objectives

Let zk denote the logits, yk denote the softmax output, t the integer
target, and tk the target one-hot representation.
To apply REINFORCE, we sample a ∼ πθ(· | x) and apply:

θ ← θ + αr(a, t)
∂

∂θ
log πθ(a | x)

= θ + αr(a, t)
∂

∂θ
log ya

= θ + αr(a, t)
∑
k

(ak − yk)
∂

∂θ
zk

Compare with the logistic regression SGD update:

θ ← θ + α
∂

∂θ
log yt

← θ + α
∑
k

(tk − yk)
∂

∂θ
zk
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Reward Baselines

For reference:

θ ← θ + αr(a, t)
∂

∂θ
log πθ(a | x)

Clearly, we can add a constant offset to the reward, and we get an
equivalent optimization problem.

Behavior if r = 0 for wrong answers and r = 1 for correct answers

wrong: do nothing
correct: make the action more likely

If r = 10 for wrong answers and r = 11 for correct answers

wrong: make the action more likely
correct: make the action more likely (slightly stronger)

If r = −10 for wrong answers and r = −9 for correct answers

wrong: make the action less likely
correct: make the action less likely (slightly weaker)
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Reward Baselines

Problem: the REINFORCE update depends on arbitrary constant
factors added to the reward.
Observation: we can subtract a baseline b from the reward without
biasing the gradient.

Ep(τ)

[
(r(τ)− b)

∂

∂θ
log p(τ)

]
= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− bEp(τ)

[
∂

∂θ
log p(τ)

]
= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− b

∑
τ

p(τ)
∂

∂θ
log p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− b

∑
τ

∂

∂θ
p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− 0

We’d like to pick a baseline such that good rewards are positive and
bad ones are negative.
E[r(τ)] is a good choice of baseline, but we can’t always compute it
easily. There’s lots of research on trying to approximate it.
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More Tricks

We left out some more tricks that can make policy gradients work a
lot better.

Natural policy gradient corrects for the geometry of the space of
policies, preventing the policy from changing too quickly.
Rather than use the actual return, evaluate actions based on estimates
of future returns. This is a class of methods known as actor-critic,
which we’ll touch upon next lecture.

Trust region policy optimization (TRPO) and proximal policy
optimization (PPO) are modern policy gradient algorithms which are
very effective for continuous control problems.
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Evolution Strategies

REINFORCE can handle discontinuous dynamics and reward
functions, but it requires a differentiable network since it computes
∂
∂θ log πθ(at | st)
Evolution strategies (ES) take the policy gradient idea a step further,
and avoid backprop entirely.

ES can use deterministic policies. It randomizes over the choice of
policy rather than over the choice of actions.

I.e., sample a random policy from a distribution pη(θ) parameterized
by η and apply the policy gradient trick

∂

∂η
Eθ∼pη [r(τ(θ))] = Eθ∼pη

[
r(τ(θ))

∂

∂η
log pη(θ)

]
The neural net architecture itself can be discontinuous.
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Evolution Strategies

https://arxiv.org/pdf/1703.03864.pdf
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Evolution Strategies

The IEEE floating point standard is nonlinear, since small enough
numbers get truncated to zero.

This acts as a discontinuous activation
function, which ES is able to handle.

ES was able to train a good MNIST
classifier using a “linear” activation
function.

https://blog.openai.com/

nonlinear-computation-in-linear-networks/
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Discussion

What’s so great about backprop and gradient descent?

Backprop does credit assignment – it tells you exactly which
activations and parameters should be adjusted upwards or downwards
to decrease the loss on some training example.
REINFORCE doesn’t do credit assignment. If a rollout happens to be
good, all the actions get reinforced, even if some of them were bad.
Reinforcing all the actions as a group leads to random walk behavior.
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Discussion

Why policy gradient?

Can handle discontinuous cost functions
Don’t need an explicit model of the environment, i.e. rewards and
dynamics are treated as black boxes

Policy gradient is an example of model-free reinforcement learning,
since the agent doesn’t try to fit a model of the environment
Almost everyone thinks model-based approaches are needed for AI, but
nobody has a clue how to get it to work
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