
CSC413/2516 Lecture 9:
Autoregressive Models and GANs

Jimmy Ba

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 1 / 34



Overview

We’ve already looked at a few autoregressive models in this course:
Neural language models from Lecture 3
RNN language models (and decoders) from Lecture 7
Transformer decoders from Lecture 8

We can push this further, and generate very long sequences.

Problem:
Training an RNN to generate these sequences requires a sequential
computation > 10,000 time steps.
Transformers are too expensive to train on 10,000 time steps.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 2 / 34



Causal Convolution

Idea 1: causal convolution

For RNN language models, we used the training sequence as both the
inputs and the outputs to the RNN.

We made sure the model was causal: each prediction depended only on
inputs earlier in the sequence.

We can do the same thing using a convolutional architecture.

No for loops! Processing each input sequence just requires a series of
convolution operations.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 3 / 34



Causal Convolution

Causal convolution for images:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 4 / 34



CNN vs. RNN

We can turn a causal CNN into an RNN by adding recurrent
connections. Is this a good idea?

The RNN has a memory, so it can use information from all past time
steps. The CNN has a limited context.
But training the RNN is very expensive since it requires a for loop over
time steps. The CNN only requires a series of convolutions.
Generating from both models is very expensive, since it requires a for
loop. (Whereas generating from a GAN or a reversible model is very
fast.)

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 5 / 34



PixelCNN and PixelRNN

Van den Oord et al., ICML 2016, “Pixel recurrent neural networks”

This paper introduced two autoregressive models of images: the
PixelRNN and the PixelCNN. Both generated amazingly good
high-resolution images.

The output is a softmax over 256 possible pixel intensities.

Completing an image using an PixelCNN:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 6 / 34



PixelCNN and PixelRNN

Samples from a PixelRNN trained on ImageNet:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 7 / 34



Dilated Convolution

Idea 2: dilated convolution

The advantage of RNNs over CNNs is that their memory lets them
learn arbitrary long-distance dependencies.

But we can dramatically increase a CNN’s receptive field using dilated
convolution.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 8 / 34



WaveNet

WaveNet is an autoregressive model for raw audio based on causal
dilated convolutions.

van den Oord et al., 2016. “WaveNet: a generative model for raw
audio”.

Audio needs to be sampled at at least 16k frames per second for good
quality. So the sequences are very long.

WaveNet uses dilations of 1, 2, . . . , 512, so each unit at the end of
this block as a receptive field of length 1024, or 64 milliseconds.

It stacks several of these blocks, so the total context length is about
300 milliseconds.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 9 / 34

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


After the break

After the break: Generative Adversarial Networks

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 10 / 34



Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

One way to judge the quality of the model is to sample from it.

This field has seen rapid progress:

2009 2015
2018

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 11 / 34



Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (this lecture)

Reversible architectures (next lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 12 / 34



Generator Networks

Autoregressive models explicitly predict a distribution at each step.

Another approach to generative modeling is to train a neural net to
produce approximate samples from the distribution.

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 13 / 34



Generator Networks

A 1-dimensional example:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 14 / 34



Generator Networks

https://blog.openai.com/generative-models/

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 15 / 34

https://blog.openai.com/generative-models/


Generator Networks

This sort of architecture sounded preposterous to many of us, but
amazingly, it works.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 16 / 34



Generative Adversarial Networks

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train two
different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image came
from the training set or the generator network

The generator network tries to fool the discriminator network

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 17 / 34



Generative Adversarial Networks

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train two
different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image came
from the training set or the generator network

The generator network tries to fool the discriminator network

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 17 / 34



Generative Adversarial Networks

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 18 / 34



Generative Adversarial Networks

Let D denote the discriminator’s predicted probability of being data

Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JD = Ex∼D[− logD(x)] + Ez[− log(1− D(G (z)))]

One possible cost function for the generator: the opposite of the
discriminator’s

JG = −JD
= const + Ez[log(1− D(G (z)))]

This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max
G

min
D
JD

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 19 / 34



Generative Adversarial Networks

Updating the discriminator:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 20 / 34



Generative Adversarial Networks

Updating the generator:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 21 / 34



Generative Adversarial Networks

Alternating training of the generator and discriminator:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 22 / 34



A Better Cost Function

We introduced the minimax cost function for the generator:

JG = Ez[log(1− D(G (z)))]

One problem with this is saturation.

Recall from our lecture on classification: when the prediction is really
wrong,

“Logistic + squared error” gets a weak gradient signal
“Logistic + cross-entropy” gets a strong gradient signal

Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 23 / 34



A Better Cost Function

Original minimax cost:

JG = Ez[log(1− D(G (z)))]

Modified generator cost:

JG = Ez[− logD(G (z))]

This fixes the saturation problem.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 24 / 34



Generative Adversarial Networks

Since GANs were introduced in 2014, there have been hundreds of
papers introducing various architectures and training methods.

Most modern architectures are based on the Deep Convolutional GAN
(DC-GAN), where the generator and discriminator are both conv nets.

GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo

Good source of horrible puns (VEEGAN, Checkhov GAN, etc.)

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 25 / 34

https://github.com/hindupuravinash/the-gan-zoo


GAN Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 26 / 34



GAN Samples

Bedrooms:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 27 / 34



GAN Samples

ImageNet object categories (by BigGAN, a much larger model with a
bunch more engineering tricks):

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 28 / 34



GAN Samples

GANs revolutionized generative modeling by producing crisp,
high-resolution images.

The catch: we don’t know how well they’re modeling the distribution.

Can’t measure the log-likelihood they assign to held-out data.
Could they be memorizing training examples? (E.g., maybe they
sometimes produce photos of real celebrities?)
We have no way to tell if they are dropping important modes from the
distribution.
See Wu et al., “On the quantitative analysis of decoder-based
generative models” for partial answers to these questions.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 29 / 34



CycleGAN

Style transfer problem: change the style of an image while preserving the
content.

Data: Two unrelated collections of images, one for each style

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 30 / 34



CycleGAN

If we had paired data (same content in both styles), this would be a
supervised learning problem. But this is hard to find.

The CycleGAN architecture learns to do it from unpaired data.

Train two different generator nets to go from style 1 to style 2, and
vice versa.
Make sure the generated samples of style 2 are indistinguishable from
real images by a discriminator net.
Make sure the generators are cycle-consistent: mapping from style 1 to
style 2 and back again should give you almost the original image.

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 31 / 34



CycleGAN

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 32 / 34



CycleGAN

Style transfer between aerial photos and maps:

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 33 / 34



CycleGAN

Style transfer between road scenes and semantic segmentations (labels of
every pixel in an image by object category):

Jimmy Ba CSC413/2516 Lecture 9: Autoregressive Models and GANs 34 / 34


