CSC413/2516 Lecture 7:
Generalization & Recurrent Neural Networks

Jimmy Ba

. C5C413 /2516 Lecture 7: Generalization & F 1/57

Overview

@ We've focused so far on how to optimize neural nets — how to get
them to make good predictions on the training set.

@ How do we make sure they generalize to data they haven't seen
before?

@ Even though the topic is well studied, it’s still poorly understood.

. C5C413/2516 Lecture 7: Generalization & F 2 /57

Generalization

Recall: overfitting and underfitting

s

We'd like to minimize the generalization error, i.e. error on novel examples.

. C5C413/2516 Lecture 7: Generalization & F 3 /57

Generalization

@ Training and test error as a function of # training examples and #

parameters:
A A
test
error test
error
training
error ini
training
error
training examples # parameters

CSC413/2516 Lecture 7: Generalization & F

4 /57

-
Our Bag of Tricks

@ How can we train a model that's complex enough to model the
structure in the data, but prevent it from overfitting? l.e., how to
achieve low bias and low variance?

@ Our bag of tricks
o data augmentation
reduce the number of paramters
weight decay
early stopping
ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout)

@ The best-performing models on most benchmarks use some or all of
these tricks.

. C5C413/2516 Lecture 7: Generalization & F 5 /57

Data Augmentation

@ The best way to improve generalization is to collect more data!

@ Suppose we already have all the data we're willing to collect. We can
augment the training data by transforming the examples. This is
called data augmentation.

@ Examples (for visual recognition)

translation

horizontal or vertical flip
rotation

smooth warping

o noise (e.g. flip random pixels)

@ Only warp the training, not the test, examples.

@ The choice of transformations depends on the task. (E.g. horizontal
flip for object recognition, but not handwritten digit recognition.)

. C5C413/2516 Lecture 7: Generalization & F 6 /57

Reducing the Number of Parameters

@ Can reduce the number of layers or the number of paramters per layer.

@ Adding a linear bottleneck layer is another way to reduce the number of
parameters:

100 units 100 units
A

1000 connections

10,000 10 units
connections

A

1000 connections

100 units 100 units

@ The first network is strictly more expressive than the second (i.e. it can
represent a strictly larger class of functions). (Why?)

@ Remember how linear layers don’'t make a network more expressive? They
might still improve generalization.

. C5C413/2516 Lecture 7: Generalization & F 7 /57

-
Weight Decay

@ We've already seen that we can regularize a network by penalizing
large weight values, thereby encouraging the weights to be small in
magnitude.

A 2
Zeg:j‘l-)\R:j'i‘EZWj
J

@ We saw that the gradient descent update can be interpreted as
weight decay:

N4 OR
_w—a(aj+/\w)

ow
:(l—a)\)w—ag‘z

. C5C413/2516 Lecture 7: Generalization & F 8 /57

-
Weight Decay

Why we want weights to be small:

_—62.0 -1.5 -1.0 =05 00 05 10 15 20

y =0.1x>+0.2x* + 0.75x3 — x2 — 2x + 2
y = —7.2x% +10.4x* + 24.5x3 — 37.9x%> — 3.6x + 12

The red polynomial overfits. Notice it has really large coefficients.

. C5C413/2516 Lecture 7: Generalization & F 9 /57

-
Weight Decay

Why we want weights to be small:

@ Suppose inputs x; and x> are nearly identical. The following two
networks make nearly the same predictions:

1 1 -9/ \11

@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and x2 match less closely).

. C5C413/2516 Lecture 7: Generalization & F 10 / 57

-
Weight Decay

@ The geometric picture:

. C5C413/2516 Lecture 7: Generalization & F 11 / 57

-
Weight Decay

@ There are other kinds of regularizers which encourage weights to be small,
e.g. sum of the absolute values.

@ These alternative penalties are commonly used in other areas of machine learning,
but less commonly for neural nets.

@ Regularizers differ by how strongly they prioritize making weights exactly zero,
vs. not being very large.

O O
N S

\/ wy wy
v L2 regularization L1 regularization

0 R:Zw? R:Z\wi\

— Hinton, Coursera lectures — Bishop, Pattern Recognition and Machine Learning

. C5C413/2516 Lecture 7: Generalization & F 12 / 57

-
Early Stopping

e We don't always want to find a global (or even local) optimum of our
cost function. It may be advantageous to stop training early.

validation
error

training

1 error

\/

epochs

@ Early stopping: monitor performance on a validation set, stop training
when the validtion error starts going up.

. C5C413/2516 Lecture 7: Generalization & F 13 / 57

-
Early Stopping

@ A slight catch: validation error fluctuates because of stochasticity in
the updates.

validation
error

training
error

\

epochs

@ Determining when the validation error has actually leveled off can be
tricky.

. C5C413/2516 Lecture 7: Generalization & F 14 / 57

Early Stopping

@ Why does early stopping work?

o Weights start out small, so it takes time for them to grow large.
Therefore, it has a similar effect to weight decay.

e If you are using sigmoidal units, and the weights start out small, then
the inputs to the activation functions take only a small range of values.

o Therefore, the network starts out approximately linear, and gradually
becomes more nonlinear (and hence more powerful).

. C5C413/2516 Lecture 7: Generalization & F 15 / 57

Ensembles

@ If a loss function is convex (with respect to the predictions), you have
a bunch of predictions, and you don’t know which one is best, you are
always better off averaging them.

Ly + -+ Awyn, t) < L(yi, t) + -+ AnL(yn, t) for A > O,Zx\; =1

@ This is true no matter where they came from (trained neural net,
random guessing, etc.). Note that only the loss function needs to be
convex, not the optimization problem.

@ Examples: squared error, cross-entropy, hinge loss

o If you have multiple candidate models and don’t know which one is
the best, maybe you should just average their predictions on the test
data. The set of models is called an ensemble.

@ Averaging often helps even when the loss is nonconvex (e.g. 0-1 loss).

. C5C413/2516 Lecture 7: Generalization & F 16 / 57

N
Ensembles

@ Some examples of ensembles:

e Train networks starting from different random initializations. But this
might not give enough diversity to be useful.

e Train networks on differnet subsets of the training data. This is called
bagging.

e Train networks with different architectures or hyperparameters, or even
use other algorithms which aren’t neural nets.

@ Ensembles can improve generalization quite a bit, and the winning
systems for most machine learning benchmarks are ensembles.

@ But they are expensive, and the predictions can be hard to interpret.

. C5C413/2516 Lecture 7: Generalization & F 17 / 57

Stochastic Regularization

@ For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

@ Dropout is a stochastic regularizer which randomly deactivates a subset of
the units (i.e. sets their activations to zero).

b — ¢(zj) with probability 1 —p
710 with probability p,

where p is a hyperparameter.

@ Equivalently,
h; = m; - ¢(z),
where mj is a Bernoulli random variable, independent for each hidden unit.
@ Backprop rule:

z=h-m;-¢'(z)

. C5C413/2516 Lecture 7: Generalization & F 18 / 57

Stochastic Regularization

@ Dropout can be seen as training an ensemble of 2P different
architectures with shared weights (where D is the number of units):

ONNONNONNO
- R
ONNONNONNO
& TRCT
"o: . @@ @
ORONNS g
© GO C)
ONNO ®
5l
®

Ensemble of subnetworks
— Goodfellow et al., Deep Learning

. C5C413/2516 Lecture 7: Generalization & F 19 / 57

-
Dropout

Dropout at test time:

@ Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

e Individual predictions are stochastic and may have high variance, but
the averaging fixes this.

@ In practice: don't do dropout at test time, but multiply the weights
by l—p

e Since the weights are on 1 — p fraction of the time, this matches their
expectation.

. C5C413/2516 Lecture 7: Generalization & F 20 / 57

-
Dropout as an Adaptive Weight Decay

Consider a linear regresswn y() = Z WjX; x The inputs are droped out

half of the time: y() =2 > J(')WJ () 'm ~ Bern(0.5).

CRUBES PR
i=1

CSC413/2516 Lecture 7: Generalization & F

Em[y(] = y(.

21/ 57

Dropout as an Adaptive Weight Decay

Consider a linear regresswn y() = Z WjX; x The inputs are droped out

half of the time: y() = 22 J(')WJ (), ~ Bern(0.5). m[y(| = y(@.

CRUBES PR
i=1

The bias-variance decomposition of the squared error gives:

N N
1 ~(i i 1 ~(i
EnlT]= 55 > (Em[y] — ey + N > Vary[71)]
i=1 i=1

CSC413/2516 Lecture 7: Generalization & 21 / 57

-
Dropout as an Adaptive Weight Decay

Consider a linear regresswn y() = Z WjX; x The inputs are droped out

half of the time: y{ —22 J('WJ () ,m ~ Bern(0.5). E,[y()] = y(0).

IEm[u7] = ﬁ ZEm[(f/(I) — t(i))2]
i=1
The bias-variance decomposition of the squared error gives:
N N
1 - . 1)
- (] ()2 .~ & (1)
EmlJ] = 55 ;(Em[y =t + o ;Varm[y]

Assume weights, inputs and masks are independent and E[x] = 0.
N

En[J] = i Z(m[7] — £)? Z S~ Var2mxwy]
i=1
1 & J
= 5N Z —)2 4 Z V?;M[)g]vvj2
— :

J
I C5C413 /2516 Lecture 7: Generalization & F 21 / 57

Stochastic Regularization

@ Dropout can help performance quite a bit, even if you're already using

weight decay.
@ Lots of other stochastic regularizers have been proposed:
o Batch normalization (mentioned last week for its optimization benefits)

also introduces stochasticity, thereby acting as a regularizer.
e The stochasticity in SGD updates has been observed to act as a

regularizer, helping generalization.
@ Increasing the mini-batch size may improve training error at the

expense of test error!

22 / 57

CSC413/2516 Lecture 7: Generalization &

-
Our Bag of Tricks

@ Techniques we just covered:

o data augmentation

reduce the number of paramters

weight decay

early stopping

ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout)

@ The best-performing models on most benchmarks use some or all of
these tricks.

. C5C413/2516 Lecture 7: Generalization & F 23 / 57

N
After the break

After the break: recurrent neural networks

. C5C413/2516 Lecture 7: Generalization & F 24 / 57

Overview

@ Sometimes we're interested in predicting sequences
e Speech-to-text and text-to-speech
o Caption generation
e Machine translation
o If the input is also a sequence, this setting is known as
sequence-to-sequence prediction.
@ We already saw one way of doing this: neural language models

o But autoregressive models are memoryless, so they can't learn
long-distance dependencies.

o Recurrent neural networks (RNNs) are a kind of architecture which can
remember things over time.

. C5C413/2516 Lecture 7: Generalization & F 25 / 57

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w;| w3, w2, w_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words. But sometimes long-distance context can be
important.

. C5C413/2516 Lecture 7: Generalization & F 26 / 57

Overview

@ Autoregressive models such as the neural language model are
memoryless, so they can only use information from their immediate
context (in this figure, context length = 1):

‘ hiddens 1 ‘ ‘ hiddens 2 ‘ ‘ hiddens 3 ‘ ‘ hiddens 4 ‘
\ 1 \ \ 1 \
‘ word 1 ‘ ‘ word 2 ‘ ‘ word 3 ‘ ‘ word 4 ‘ e

o If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN use
longer-term dependencies:

‘ hiddens 1 } ‘ hiddens 2 } ‘ hiddens 3 ’—b{ hiddens 4 ‘
N LN \

‘ word 1 ‘ word 2 ‘ word 3 ‘ ‘ word 4 ‘

. C5C413/2516 Lecture 7: Generalization & F 27 / 57

Recurrent neural nets

@ We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would

then have self-loops.

@ We can unroll the RNN's graph by explicitly representing the units at
all time steps. The weights and biases are shared between all time

steps

o Except there is typically a separate set of biases for the first time step.

output units

A

hidden units

A

time 1 time 2 time 3
output units output units output units
A A A
time 1 time 2 time 3
hidden units hidden units hidden units
A A A
time 1 time 2 time 3
input units input units input units

CSC413/2516 Lecture 7: Generalization &

28 / 57

|
RNN examples

Now let's look at some simple examples of RNNs.

This one sums its inputs:

linear
output

linear
hidden
unit

T=1 T=; T=3 T=

Jimmy Ba CSC413/2516 Lecture 7: Generalization & F 29 / 57

|
RNN examples

This one determines if the total values of the first or second input are larger:

logistic
output
unit

linear
hidden

Jimmy Ba CSC413/2516 Lecture 7: Generalization & F 30 / 57

-
Language Modeling

Back to our motivating example, here is one way to use RNNs as a language
model:

target = target = target =
llquickll Ilbrownll llfoxll
time 1 [timez [times
hidden units "1 hidden units 7| hidden units
input = input = input =
"quick" "brown"

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

. C5C413/2516 Lecture 7: Generalization & F 31 /57

Language Modeling

When we generate from the model (i.e. compute samples from its

distribution over sentences), the outputs feed back in to the network as
inputs.

time 1 o time 2 nd time 3 ol time 4
hidden units 7| hidden units "| hidden units 7| hidden units
"quick" "brown" llfox"

At training time, the inputs are the tokens from the training set (rather
than the network’s outputs). This is called teacher forcing.

. C5C413/2516 Lecture 7: Generalization & F 32 /57

Some remaining challenges:

@ Vocabularies can be very large once you include people, places, etc.

It's computationally difficult to predict distributions over millions of
words.

@ How do we deal with words we haven't seen before?

@ In some languages (e.g. German), it's hard to define what should be
considered a word.

. C5C413/2516 Lecture 7: Generalization & F 33 /57

-
Language Modeling

Another approach is to model text one character at a time!

target = target = target =
prive ng "o

time 1 time 2 time 3
hidden units hidden units hidden units

input = input = input =
" ngn

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,
which we're not going to talk about.

. C5C413/2516 Lecture 7: Generalization & F 34 / 57

-
Language Modeling

From Geoff Hinton's Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters' sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and |. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

. C5C413/2516 Lecture 7: Generalization & F 35 / 57

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs

of translated sentences to train on.

What's wrong with the following setup?

-

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

CSC413/2516 Lecture 7: Generalization &

36 / 57

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

@ The sentences might not be the same length, and the words might
not align perfectly.

@ You might need to resolve ambiguities using information from later in
the sentence.

I C5C413/2516 Lecture 7: Generalization & F 36 / 57

Neural Machine Translation

Sequence-to-sequence architecture: the network first reads and memorizes

the sentence. When it sees the end token, it starts outputting the
translation.

“le” “renTard” “brfm“ “rapTide” <E(T)S>
THTHTHTI—'!TH —]
“the” “quick” “brown” “fox” <EOS> “le” “renard” “brun” “rapide”

encoder decoder

The encoder and decoder are two different networks with different weights.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, K. Cho, B. van Merrienboer,
C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, llya Sutskever, Oriol Vinyals and Quoc Le, NIPS 2014.

. C5C413/2516 Lecture 7: Generalization & F 37 /57

|
What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011. Input:
vagppkn
sgdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg
Input:
i=8827
o= (i-5347) A training input with characters scrambled
print ((c+8704) if 2641<8500 else
5308)

Target: 1218.

Example training inputs

W. Zaremba and |. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

B C5C413 /2516 Lecture 7: Generalization & F 38 / 57

http://arxiv.org/abs/1410.4615

|
What can RNNs compute?

Some example results:

Input:

print (6652).
Target: 6652.
”Baseline” prediction: 6652.
Naive” prediction: 6652.
”Mix” prediction: 6652.

”Combined” prediction: 6652.

Input:

d=5446

for x in range(8):d+=(2678 if 4803<2829 else 9848)
print ((d if 5935<4845 else 3043)).

Target: 3043.
“’Baseline” prediction: 3043.
”’Naive” prediction: 3043.
”Mix” prediction: 3043.

”Combined” prediction: 3043.

print ((5997-738)) .

Target: 5259.
”’Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.

”Combined” prediction: 5229.

Input:

print (((1090-3305)+9466)) .
Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.

”Combined” prediction: 7699.

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It's fun

to try to guess from the mistakes what algorithms it’s discovered.

CSC413/2516 Lecture 7: Generalization & F

39 / 57

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

Backprop Through Time

@ As you can guess, we learn the RNN weights using backprop.

@ In particular, we do backprop on the unrolled network. This is known
as backprop through time.

. C5C413/2516 Lecture 7: Generalization & F 40 / 57

-
Backprop Through Time

Here's the unrolled computation graph. Notice the weight sharing.

L

AN

y(7R y®3)

Jl) L> J@

(1)—->h 1)—> (2)_-»h 2)—>Z(3)—> 3)

. C5C413/2516 Lecture 7: Generalization & F 41 /57

-
Backprop Through Time

Activations:
L=1
£ — = 0L
y(l U) y(B) FO W(;S’(r(t))
1 J J O = r(0) y 4+ 20
r 2 T 2) r 3) _

1>——>h 22—, 2>->Z<3>_.h :
Z (1) 5t
\)(/ zrw o

I C5C413 /2516 Lecture 7: Generalization & F 42 /57

-
Backprop Through Time

@ Now you know how to compute the derivatives using backprop
through time.

@ The hard part is using the derivatives in optimization. They can
explode or vanish. Addressing this issue will take all of the next

lecture.

. C5C413/2516 Lecture 7: Generalization & F 43 / 57

-
Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

With linear activations:

Backprop updates:
on" jon™ = w1

m — Z(t+1)
- Exploding:
20 = 50 ¢/(29) -
. . . w=11,T=50 = 8h7:117.4
Applying this recursively: oht)
— —_ Vanishing:
AW = wT 1/ (2. .. ¢/ (7)) h(D) &
(M
the Jacobian 8h(T) /oM w=09T=50 = DH = 0.00515

I C5C413 /2516 Lecture 7: Generalization & F 44 / 57

-
Why Gradients Explode or Vanish

@ More generally, in the multivariate case, the Jacobians multiply:

Oh(™M) oh(T) Oh(@)
oh(— an(T-1) " gh(M

@ Matrices can explode or vanish just like scalar values, though it's
slightly harder to make precise.
@ Contrast this with the forward pass:

e The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.

e The backward pass is linear, so it's hard to keep things stable. There's
a thin line between exploding and vanishing.

. C5C413/2516 Lecture 7: Generalization & F 45 / 57

-
Why Gradients Explode or Vanish

@ We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let's think about it conceptually.

@ The Jacobian Oh(T) /oh(") means, how much does h(T) change when
you change h(1)?

@ Let’s imagine an RNN's behavior as a dynamical system, which has
various attractors:

— Geoffrey Hinton, Coursera

@ Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.
@ If you're on the boundary, the gradient blows up because moving

slightly moves you from one attractor to the other,
. C5C413/2516 Lecture 7: Generalization & F 46 / 57

Iterated Functions

@ Each hidden layer computes some function of the previous hiddens
and the current input. This function gets iterated:

h®) = £(£(F(h™M), x(2)), x(3)) x®),

e Consider a toy iterated function: f(x) =3.5x(1 — x)

y=f(z) y=f(f(z))

Iarge

7/—f(f(f(rm u—fO-- Of(m

CSC413/2516 Lecture 7: Generalization & F 47 / 57

Keeping Things Stable

@ One simple solution: gradient clipping

@ Clip the gradient g so that it has a norm of at most #:
if [lgll > »:

g(_ng

llgll
@ The gradients are biased, but at least they don't blow up.

Without clipping ‘With clipping

J(w,b)

— Goodfellow et al., Deep Learning
CSC413/2516 Lecture 7: Generalization & F

48 / 57

Long-Term Short Term Memory

o Really, we're better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

@ Long-Term Short Term Memory (LSTM) is a popular architecture
that makes it easy to remember information over long time periods.
o What's with the name? The idea is that a network’s activations are its
short-term memory and its weights are its long-term memory.
e The LSTM architecture wants the short-term memory to last for a long

time period.
@ It's composed of memory cells which have controllers saying when to
store or forget information.

. C5C413/2516 Lecture 7: Generalization & F 49 / 57

-
Long-Term Short Term Memory

@ Replace each single unit in an RNN by a memory block -

Block,output
Inputs, \

Output Gate

Ct+1 = ¢t - forget gate + new input - input gate

/ @ /=0,f =1= remember the previous
Inputs,
«outputs value

from all . .

blocks @ /=1,f =1 = add to the previous value

@ /i =0,f =0 = erase the value
Inputs,\ ’

outputs
from all

blocks /

@ j=1,f =0 = overwrite the value

Input Gate

Setting i = 0,f = 1 gives the reasonable
“default” behavior of just remembering things.

Block

inputs, outputs from all blocks

- C5C413/2516 Lecture 7: Generalization & F 50 / 57

-
Long-Term Short Term Memory

@ In each step, we have a vector of memory cells ¢, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

@ There's a full set of connections from all the inputs and hiddens to
the input and all of the gates:

i o

ft — g W(Yt >
o; o h_;
gt tanh

ct:ftoct—1+itogt

h; = o; o tanh(c;)

@ Exercise: show that if f;11 =1, i;11 =0, and o; = 0, the gradients
for the memory cell get passed through unmodified, i.e.

Ct =Cty1-

. C5C413/2516 Lecture 7: Generalization & F 51 / 57

-
Long-Term Short Term Memory

@ Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

@ In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

@ Since then, they've been one of the most widely used RNN
architectures.

@ There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

@ You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

. C5C413/2516 Lecture 7: Generalization & F 52 / 57

-
Long-Term Short Term Memory

Visualizations:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

. C5C413/2516 Lecture 7: Generalization & F 53 / 57

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

|
Deep Residual Networks

@ It turns out the intuition of using linear units to by-pass vanishing
gradient problem was a crucial idea behind the best ImageNet models

from 2015, deep residual nets.

Year
2010
2011
2012
2013
2014
2015

@ The idea is using linear skip connections to easily pass information

Model

Hand-designed descriptors + SVM
Compressed Fisher Vectors + SVM
AlexNet

a variant of AlexNet

GoogleNet

deep residual nets

directly through a network.

CSC413/2516 Lecture 7: Generalization &

Top-5 error

28.2%
25.8%
16.4%
11.7%
6.6%
4.5%

Deep Residual Networks

o Recall: the Jacobian 9h(T)/0h(!) is the product of the individual

Jacobians:
oh(™) h(T) oh(

oh@M — oh(T-1 """ 9h®
e But this applies to multilayer perceptrons and conv nets as well! (Let
t index the layers rather than time.)

@ Then how come we didn't have to worry about exploding/vanishing
gradients until we talked about RNNs?
e MLPs and conv nets were at most 10s of layers deep.
e RNNs would be run over hundreds of time steps.
o This means if we want to train a really deep conv net, we need to
worry about exploding/vanishing gradients!

. C5C413/2516 Lecture 7: Generalization & F 55 / 57

|
Deep Residual Networks

@ Remember Homework 17 You derived backprop for this architecture:

z=WWx 4+ b®)
h=¢(2)
y=x+W®h

@ This is called a residual block, and it's actually

pretty useful. y =x+F(x) GE
@ Each layer adds something (i.e. a residual) to

the previous value, rather than producing an F(x) h

entirely new value. 7y

@ Note: the network for F can have multiple
layers, be convolutional, etc. X

B C5C413 /2516 Lecture 7: Generalization & R 56 / 57

|
Deep Residual Networks

@ We can string together a bunch of residual
blocks.

@ What happens if we set the parameters such

that F(x()) = 0 in every layer? Iij
3
o Then it passes x(!) straight through unmodified! F(a'?) .
®3)
x

e This means it's easy for the network to
represent the identity function. E?
— —— ——OF 2@
x(0) = x(¢+1) 4 x(£+1) 2

+ ox D

— oOF 1

— x(+1) (] -7 F(z™ j
x (+ ¥) won [
2z

@ As long as the Jacobian 0F /0x is small, the
derivatives are stable.

. C5C413 /2516 Lecture 7: Generalization & F 57 / 57

