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Overview

We’ve seen convolutional neural networks are very successful
computer vision models.

But, how do we know the network has learnt useful patterns from the
training set?

The interpretation of deep learning models is a challenge due to their
size, complexity, and often opaque internal state.

In this lecture, we discuss a few some tools to help understand the
behavior of ML models.
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Overview

Recall the computation graph:

From this graph, you could compute ∂L/∂x, but we never made use
of this.

Basic idea: ∂L/∂x contains the model’s sensitivity wrt changes of its
input. It could be useful for interpreting or breaking the model!
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Overview

Use cases of input gradients:

Visualizing what learned features represent

Visualizing image gradients to give us per-image feature visualization
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”
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Feature Visualization

Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

Fully connected
Convolutional

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

What to do with the higher-level features?
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Feature Visualization

One way to formalize: pick the images in the training set which
activate a unit most strongly.

Here’s the visualization for layer 1:
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Feature Visualization

Layer 3:
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Feature Visualization

Layer 4:
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Feature Visualization

Layer 5:

Jimmy Ba CSC413/2516 Lecture 6: Interpretability 9 / 32



Feature Visualization

Higher layers seem to pick up more abstract, high-level information.

Problem: can’t tell what the unit is actually responding to in the image!
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Overview

Use cases of input gradients:

Visualizing what learned features represent

Visualizing image gradients to give us per-image feature
visualization
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”
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Feature Visualization

Input gradients can be noisy and hard to interpret.

Take a good object recognition conv net (Alex Net) and compute the
gradient of log p(y = “deer”|x):

Original image
Gradient for “deer”

This is partially due to the steepest directions are local sensitivity wrt
the current input pixels. It is difficult to pick out important global
features from one instance of the local changes.
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Feature Visualization

SmoothGrad is a method to estimate a global “saliency” map.
Do the backward pass on a few noisy version of the input images,
then average their input gradients.

Sdeer =
1

N

N∑
i=1

∂Ldeer
∂x

(x + εi ), ε ∼ N (0, σ2I )

We want to average out the local sensitity effect from slightly
perturbed input images.
Results
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Cautionary Tales of Image Gradients

This looks very convincing!

Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

But, what would it look like on a randomly initialized neural network?
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Cautionary Tales of Image Gradients

Sanity check for saliency maps, http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
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Cautionary Tales of Image Gradients

Testing with Concept Activation Vectors, https://arxiv.org/pdf/1711.11279.pdf
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Overview

Use cases of input gradients:

Visualizing what learned features represent

Visualizing image gradients to give us per-image feature visualization
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”
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Gradient Ascent on Images

Can do gradient ascent on an image to maximize the activation of a
given neuron.

Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/
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Gradient Ascent on Images
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Gradient Ascent on Images

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/
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Gradient Ascent on Images

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/
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Adversarial Examples

One of the most surprising findings about neural nets has been the
existence of adversarial inputs, i.e. inputs optimized to fool an
algorithm.
Given an image for one category (e.g. “cat”), compute the image
gradient to maximize the network’s output unit for a different
category (e.g. “dog”)

Perturb the image very slightly in this direction, and chances are, the
network will think it’s a dog!
Works slightly better if you take the sign of the entries in the gradient;
this is called the fast gradient sign method.
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Adversarial Examples

The following adversarial examples are misclassified as ostriches.
(Middle = perturbation ×10.)
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Adversarial Examples

2013: ha ha, how cute!

The paper which introduced adversarial examples was titled “Intriguing
Properties of Neural Networks.”

2018: serious security threat
Nobody has found a reliable method yet to defend against them.

7 of 8 proposed defenses accepted to ICLR 2018 were cracked within
days.

Adversarial examples transfer to different networks trained on a totally
separate training set!
You don’t need access to the original network; you can train up a new
network to match its predictions, and then construct adversarial
examples for that.

Attack carried out against proprietary classification networks accessed
using prediction APIs (MetaMind, Amazon, Google)
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Adversarial Examples

You can print out an adversarial image and take a picture of it, and it
still works!

Can someone paint over a stop sign to fool a self-driving car?
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Adversarial Examples

An adversarial example in the physical world (network thinks it’s a
gun, from a variety of viewing angles!)
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Deep Dream

Start with an image, and run a conv net on it.

Pick a layer in the network.

Change the image such that units which were already highly activated
get activated even more strongly. “Rich get richer.”

I.e., set h = h, and then do backprop.
Aside: this is a situation where you’d pass in something other than 1 to
backward pass in autograd.

Repeat.

This will accentuate whatever features of an image already kind of
resemble the object.
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Deep Dream
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Deep Dream
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Deep Dream Deep Dream

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy
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