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Overview

So far in the course, we’ve seen two types of layers:

fully connected layers

embedding layers (i.e. lookup tables)

Different layers could be stacked together to build powerful models.
Let’s add another layer type: convolution layers
Conv layers are very useful building blocks for computer vision applications.
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Overview

What makes vision hard?

Vison needs to be robust to a lot of transformations or distortions:

change in pose/viewpoint
change in illumination
deformation
occlusion (some objects are hidden behind others)

Many object categories can vary wildly in appearance (e.g. chairs)

Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”
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Overview

Recall we looked at some hidden layer features for classifying handwritten
digits:

This isn’t going to scale to full-sized images.
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Overview

Suppose we want to train a network that takes a 200 × 200 RGB image as
input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 × 200 × 3 = 120K.
Parameters = 120K × 1000 = 120 million.

What happens if the object in the image shifts a little?
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Overview

In the fully connected layer, each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

But, do we really expect to learn a useful feature at the first layer which depends
on pixels that are spatially far away ?
The far away pixels will probably belong to completely different objects (or object
sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.
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Overview

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors shared at all image locations.
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Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

Jimmy Ba CSC421/2516 Lecture 5: Convolutional Neural Networks & Image Classification 8 / 60



Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.
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Convolution Layers

Convolution layers:

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.
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Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights
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Convolution

We’ve already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we’ll introduce a new high-level operation, convolution. Here the
motivation isn’t computational efficiency — we’ll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let’s look at the 1-D case first. If a and b are two arrays,

(a ∗ b)t =
∑
τ

aτbt−τ .

Note: indexing conventions are inconsistent. We’ll explain them in each
case.
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Convolution

Method 1: translate-and-scale
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Convolution

Method 2: flip-and-filter
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Convolution

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1



Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)
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Convolution

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Linearity
a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .
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2-D Convolution

Method 1: Translate-and-Scale
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2-D Convolution

Method 2: Flip-and-Filter
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2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0
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2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0
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2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1
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Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)
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Convolutional networks

It’s common to apply a linear rectification nonlinearity: yi = max(zi , 0)

convolution linear
rectification

convolution layer

Why might we do this?

Convolution is a linear operation.
Therefore, we need a nonlinearity,
otherwise 2 convolution layers
would be no more powerful than 1.

Two edges in opposite directions
shouldn’t cancel
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Pooling layers

The other type of layer in a pooling layer. These layers reduce the size of
the representation and build in invariance to small transformations.

z1 z2 z3 z4 z5 z6

y1

z7

y2 y3

Most commonly, we use max-pooling, which computes the maximum value
of the units in a pooling group:

yi = max
j in pooling group

zj
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Convolutional networks

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Convolutional networks

Because of pooling, higher-layer filters can cover a larger region of the input than

equal-sized filters in the lower layers.

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Equivariance and Invariance

We said the network’s responses should be robust to translations of the
input. But this can mean two different things.

Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

We’d like the network’s predictions to be invariant: if you translate
the inputs, the prediction should not change.

Pooling layers provide invariance to small translations.
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Convolution Layers

Each layer consists of several feature maps, or channels each of which is
an array.

If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer’s feature maps.
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Convolution Layers

For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the
convolution layer’s input has J feature maps and its output has I feature
maps. Let t index the locations. Suppose the convolution kernels have
radius R, i.e. dimension K = 2R + 1.

Each unit in a convolution layer receives inputs from all the units in its
receptive field in the previous layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

In terms of convolution,

yi =
∑
j

xj ∗ flip(wi ,j).
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Backprop Updates (Optional)

How do we train a conv net? With backprop, of course!

Recall what we need to do. Backprop is a message passing procedure,
where each layer knows how to pass messages backwards through the
computation graph. Let’s determine the updates for convolution layers.

We assume we are given the loss derivatives yi ,t with respect to the
output units.

We need to compute the cost derivatives with respect to the input
units and with respect to the weights.

The only new feature is: how do we do backprop with tied weights?
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Backprop Updates (Optional)

Consider the computation graph for the inputs:

Each input unit influences all the output units that have it within their
receptive fields. Using the multivariate Chain Rule, we need to sum
together the derivative terms for all these edges.
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Backprop Updates (Optional)

Recall the formula for the convolution layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

We compute the derivatives, which requires summing over all the outputs
units which have the input unit in their receptive field:

xj ,t =
∑
τ

yi ,t−τ
∂yi ,t−τ
∂xj ,t

=
∑
τ

yi ,t−τ wi ,j ,τ

Written in terms of convolution,

xj = yi ∗ wi ,j .
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Backprop Updates (Optional)

Consider the computation graph for the weights:

Each of the weights affects all the output units for the corresponding input
and output feature maps.
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Backprop Updates (Optional)

Recall the formula for the convolution layer:

yi ,t =
J∑

j=1

R∑
τ=−R

wi ,j ,τxj ,t+τ .

We compute the derivatives, which requires summing over all spatial
locations:

wi ,j ,τ =
∑
t

yi ,t
∂yi ,t
∂wi ,j ,τ

=
∑
t

yi ,t xj ,t+τ
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After the break

After the break: Apply CNN to Image Classification
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Object recognition

Object recognition is the task of identifying which object category is
present in an image.

It’s challenging because objects can differ widely in position, size,
shape, appearance, etc., and we have to deal with occlusions, lighting
changes, etc.

Why we care about it

Direct applications to image search
Closely related to object detection, the task of locating all instances of
an object in an image

E.g., a self-driving car detecting pedestrians or stop signs

For the past 6 years, all of the best object recognizers have been
various kinds of conv nets.
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Datasets

In order to train and evaluate a machine learning system, we need to
collect a dataset. The design of the dataset can have major
implications.

Some questions to consider:

Which categories to include?
Where should the images come from?
How many images to collect?
How to normalize (preprocess) the images?
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Image Classification

Conv nets are just one of many possible approaches to image
classification. However, they have been by far the most successful for
the last 8 years.

Biggest image classification “advances” of the last two decades

Datasets have gotten much larger (because of digital cameras and the
Internet)
Computers got much faster

Graphics processing units (GPUs) turned out to be really good at
training big neural nets; they’re generally about 30 times faster than
CPUs.

As a result, we could fit bigger and bigger neural nets.
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MNIST Dataset

MNIST dataset of handwritten digits

Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of size
28 × 28
Normalization: centered within in the image, scaled to a consistent
size

The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

It was good enough to be used in a system for automatically reading
numbers on checks.
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object recognition
since then.
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ImageNet

Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

Design decisions

Categories: Taken from a lexical database called WordNet

WordNet consists of “synsets”, or sets of synonymous words
They tried to use as many of these as possible; almost 22,000 as of
2010
Of these, they chose the 1000 most common for the ILSVRC
The categories are really specific, e.g. hundreds of kinds of dogs

Size: 1.2 million full-sized images for the ILSVRC
Source: Results from image search engines, hand-labeled by
Mechanical Turkers

Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary on
a lot of dimensions

Russakovsky et al.
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ImageNet

Size on disk:

MNIST
60 MB

ImageNet
50 GB
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LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:The!architecture!of!LeNet5!

Jimmy Ba CSC421/2516 Lecture 5: Convolutional Neural Networks & Image Classification 46 / 60



Size of a Conv Net

Ways to measure the size of a network:

Number of units. This is important because

the activations need to
be stored in memory during training (i.e. backprop).
Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.
Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

The story for conv nets is more complicated.
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Size of a Conv Net

fully connected layer convolution layer
# output units WHI WHI

# weights W 2H2IJ K 2IJ
# connections W 2H2IJ WHK 2IJ
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units # connections # weights

C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output fully connected 10 840 840

Conclusions?
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Size of a Conv Net

Rules of thumb:

Most of the units and connections are in the convolution layers.
Most of the weights are in the fully connected layers.

If you try to make layers larger, you’ll run up against various resource
limitations (i.e. computation time, memory)

Conv nets have gotten a LOT larger since 1998!
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

categories 10 10 1,000
image size 16 × 16 28 × 28 256 × 256 × 3

training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000

parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million
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AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

They used lots of tricks we’ve covered in this course (ReLU units, weight decay,
data augmentation, SGD with momentum, dropout)

AlexNet’s stunning performance on the ILSVRC is what set off the deep learning
boom of the last 6 years.
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GoogLeNet

GoogLeNet, 2014.

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet
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GoogLeNet

They were really aggressive about cutting the number of parameters.
Motivation: train the network on a large cluster, run it on a cell phone

Memory at test time is the big constraint.
Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
Parameters need to be stored both at training and test time, so these
are the memory bottleneck.

How they did it

No fully connected layers (remember, these have most of the weights)
Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)

GoogLeNet has “only” 2 million parameters, compared with 60 million
for AlexNet
This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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Classification

ImageNet results over the years. Note that errors are top-5 errors (the network gets to
make 5 guesses).

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

We’ll cover deep residual nets later in the course, since they require an idea we haven’t
covered yet.

Human-performance is around 5.1%.

They stopped running the object recognition competition because the performance is

already so good.
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Beyond Classification

The classification nets map the entire input image to a pre-defined class categories.

But there are more than just class labels in an image.

where is the foreground object? how many? what is in the background?

(PASCAL VOC 2012)
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Semantic Segmentation

Semantic segmentation, a natural extention of classification, focuses on making
dense classification of class labels for every pixel.

It is an important step towards complete scene understanding in compter vision.

Semantic segmentation is a stepping stone for many of the high-level vision

tasks, such as object detection, Visual Question Answering (VQA).

A naive approach is to adapt the existing object classification conv nets for each
pixel. This works surprisingly well.

(Fully Convolutional Networks, 2015)
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Semantic Segmentation

After the success of CNN classifiers, segmentation models quickly moved away
from hand-craft features and pipelines but instead use CNN as the main structure.

Pre-trained ImageNet classification network serves as a building block for all the
state-of-the-art CNN-based segmentation models.

from left to wright (Li, et. al., (CSI), CVPR, 2013; Long, et. al., (FCN), CVPR 2015; Chen et. al., (DeepLab), PAMI 2018)
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Supervised Pre-training and Transfer Learning

In practice, we will rarely train an image classifier from scratch.

It is unlikely we will have millions of cleanly labeled images for our
specific datasets.

If the dataset is a computer vision task, it is common to fine-tune a
pre-trained conv net on ImageNet or OpenImage.

Just like semantic segmentation tasks, we will fix most of the weights
in the pre-trained network. Only the weights in the last layer will be
randomly initialized and learnt on the current dataset/task.
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Supervised Pre-training and Transfer Learning

When to fine-tune?
How many training examples we have in the new dataset/task?

Fewer new examples: more weights from the pre-trained networks are
fixed.

How similar is the new dataset to our pre-training dataset? Microspy
images v.s. natural images:

more fine-tuning is needed for dissimilar datasets.

Learning rate for the fine-tuning stage is often much lower than the
learning rate used for training from scratch.
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