CSC413/2516 Lectures 4:
Optimization

Jimmy Ba

CSC413/2516 Lectures 4: Optimization 1/43

Overview

@ We've talked a lot about how to compute gradients. What do we
actually do with them?

@ Today's lecture: various things that can go wrong in gradient descent,
and what to do about them.

o Let's group all the parameters (weights and biases) of our network
into a single vector 6.

@ This lecture makes heavy use of the spectral decomposition of
symmetric matrices, so it would be a good idea to review this.

e Subsequent lectures will not build on the more mathematical parts of
this lecture, so you can take your time to understand it.

CSC413/2516 Lectures 4: Optimization 2/43

Features of the Optimization Landscape

local minima

saddle points

Rosenbrock

plateaux

cliffs (covered in a
later lecture)
CSC413/2516 Lectures 4: Optimization

3/43

Review: Hessian Matrix

@ The Hessian matrix, denoted H, or V27 is the matrix of second

derivatives:

2T rg ... 2T
89% 00100, 00,00p
2T 27 ... T

00,00 002 00,00
H=— V2j _ 2. 1 .2 2. D

LN ARG LN AR 827

90p00; 9000, 902

’ . . 2 2
@ It's a symmetric matrix because % = —a‘z,ge,.
iovj OV

CSC413/2516 Lectures 4: Optimization 4/43

Review: Hessian Matrix

@ Locally, a function can be approximated by its second-order Taylor
approximation around a point g:

J(6) ~ T (80) + VI (60) (6 — 60) + 3(6 — 60) TH(60)(6 — 6o).
@ A critical point is a point where the gradient is zero. In that case,

J(0) ~ J(60) + 3(0 — 60) "H(60)(6 — 6o).

CSC413/2516 Lectures 4: Optimization 5 /43

Review: Hessian Matrix

@ A lot of important features of the optimization landscape can be
characterized by the eigenvalues of the Hessian H.

@ Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.

@ This can be expressed in terms of the spectral decomposition:
H=QAQ",

where Q is an orthogonal matrix (whose columns are the
eigenvectors) and A is a diagonal matrix (whose diagonal entries are
the eigenvalues).

CSC413/2516 Lectures 4: Optimization 6 /43

Review: Hessian Matrix

@ We often refer to H as the curvature of a function.
@ Suppose you move along a line defined by @ + tv for some vector v.
@ Second-order Taylor approximation:

2
T+ tv)~ T(0)+tV.T(0) v+ v

5 v H(O)v

@ Hence, in a direction where v Hv > 0, the cost function curves
upwards, i.e. has positive curvature. Where v Hv < 0, it has
negative curvature.

CSC413/2516 Lectures 4: Optimization 7/43

Review: Hessian Matrix

@ A matrix A is positive definite if v Av > 0 for all v #0. (le., it
curves upwards in all directions.)

o It is positive semidefinite (PSD) if v Av > 0 for all v # 0.

o Equivalently: a matrix is positive definite iff all its eigenvalues are
positive. It is PSD iff all its eigenvalues are nonnegative. (Exercise:
show this using the Spectral Decomposition.)

e For any critical point 8., if H(8.) exists and is positive definite, then
0. is a local minimum (since all directions curve upwards).

CSC413/2516 Lectures 4: Optimization 8 /43

N
Convex Functions

@ Recall: a set S is convex if for any xg,x; € S,

(1-Axo+XIx; €S for0<A<1L #|

@ A function f is convex if for any xq, x1,

F((1 = Mxo + Ax1) < (1 — NF(x0) + AM(x1)

@ Equivalently, the set of
. . (1= XA)f(xo) i :
points lying above the b\ Ao e

g + Af(z1)
graph of f is convex.
@ Intuitively: the function
is bowl-shaped. £ = Nao !
+ Azq) ;! ;i i

Zo (1- Nz T

CSC413/2516 Lectures 4: Optimization 9/43

Convex Functions

e If J is smooth (more precisely, twice differentiable), there's an
equivalent characterization in terms of H:
e A smooth function is convex iff its Hessian is positive semidefinite
everywhere.
o Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

o Exercise: show that squared error, logistic-cross-entropy, and
softmax-cross-entropy losses are convex (as a function of the network
outputs) by taking second derivatives.

CSC413/2516 Lectures 4: Optimization 10 / 43

Convex Functions

@ For a linear model,
z=w'x+ bis a linear
function of w and b. If §
the loss function is (=NLlwo) L\ -------------------- e of -

_ +AL(wy)
convex as a function of
z, then it is convex as a
function of w and b.

L((1 = Nwo
@ Hence, linear regression, +\w) i f i
logistic regression, and
softmax regression are
convex. - - >

CSC413/2516 Lectures 4: Optimization 11/ 43

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

CSC413/2516 Lectures 4: Optimization 12 /43

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

@ Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

e l.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

E\E =D el

CSC413/2516 Lectures 4: Optimization 12 /43

Local Minima

@ By definition, if a function 7 is convex, then for any set of points
01,...,0p in its domain,

T(Mb1+-+AnOn) < MT(01)+ -+ AnT(On) for i >0, XA =1.

@ Because of permutation symmetry, there are K! permutations of the
hidden units in a given layer which all compute the same function.

@ Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

o If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Hence, training multilayer neural nets is non-convex.

CSC413/2516 Lectures 4: Optimization 13 / 43

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

e They're normally only a problem if there are local minima "“in function

space”. E.g., CycleGANSs (covered later in this course) have a bad local

minimum where they learn the wrong color mapping between domains.

CSC413/2516 Lectures 4: Optimization 14 / 43

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

e They're normally only a problem if there are local minima "“in function
space”. E.g., CycleGANSs (covered later in this course) have a bad local
minimum where they learn the wrong color mapping between domains.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

CSC413/2516 Lectures 4: Optimization 14 / 43

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

e They're normally only a problem if there are local minima "“in function
space”. E.g., CycleGANSs (covered later in this course) have a bad local
minimum where they learn the wrong color mapping between domains.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

o Then it's essentially a regression problem, which is convex.

e Hence, local optima can probably be fixed by adding more hidden units.

o Note: this argument hasn't been made rigorous.

CSC413/2516 Lectures 4: Optimization 14 / 43

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

e They're normally only a problem if there are local minima "“in function
space”. E.g., CycleGANSs (covered later in this course) have a bad local
minimum where they learn the wrong color mapping between domains.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

o Then it's essentially a regression problem, which is convex.

e Hence, local optima can probably be fixed by adding more hidden units.

o Note: this argument hasn't been made rigorous.

@ Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.

CSC413/2516 Lectures 4: Optimization 14 / 43

|
Saddle points

A saddle point is a point where:
e VJ(0)=0
@ H(0) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?

CSC413/2516 Lectures 4: Optimization 15 / 43

|
Saddle points

A saddle point is a point where:
e VJ(0)=0
@ H(0) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?
o If we're exactly on the saddle point, then we're stuck.

o If we're slightly to the side, then we can get unstuck.

CSC413/2516 Lectures 4: Optimization 15 / 43

|
Saddle points

@ Suppose you have two hidden units with identical incoming and
outgoing weights.

o After a gradient descent update, they will still have identical weights.
By induction, they'll always remain identical.

@ But if you perturbed them slightly, they can start to move apart.
@ Important special case: don't initialize all your weights to zero!
o Instead, break the symmetry by using small random values.

CSC413/2516 Lectures 4: Optimization 16 / 43

Plateaux

A flat region is called a plateau. (Plural: plateaux)

RN T

Can you think of examples?

CSC413/2516 Lectures 4: Optimization 17 / 43

Plateaux

A flat region is called a plateau. (Plural: plateaux)

SR 12

e
\

Can you think of examples?
@ 0-1 loss
@ hard threshold activations

@ logistic activations & least squares

CSC413/2516 Lectures 4: Optimization 17 / 43

N
Plateaux

@ An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

o If ¢/(z) is always close to zero, then the weights will get stuck.

o If there is a ReLU unit whose input z; is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.

CSC413/2516 Lectures 4: Optimization 18 / 43

N
[ll-conditioned curvature

Long, narrow ravines:

Resenbrock / O
minimum

@ Suppose H has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions).

)

@ Gradient descent bounces back and forth in high curvature directions and
makes slow progress in low curvature directions.

e To interpret this visually: the gradient is perpendicular to the contours.

@ This is known as ill-conditioned curvature. It's very common in neural net
training.

CSC413/2516 Lectures 4: Optimization 19 / 43

lll-conditioned curvature: gradient descent dynamics

@ To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

J(6) = 507 A6,

where A is PSD.
o Gradient descent update:

0k+1 — Ok — an(Hk)
= 0 — oAb,
= (1—aA)d,

@ Solving the recurrence,
0, = (1 — aA)<6

CSC413/2516 Lectures 4: Optimization 20 / 43

lll-conditioned curvature: gradient descent dynamics

@ We can analyze matrix powers such as (I — aA)*8 using the spectral
decomposition.

o Let A= QAQ' be the spectral decomposition of A.

(1 — aA) 0y = (1 — aQAQ T)*0,
= [Q(1 - an)Q]"60
= Q(1 — aN) Q"6

@ Hence, in the Q basis, each coordinate gets multiplied by (1 — a/\,-)k,
where the A; are the eigenvalues of A.
o Cases:

o 0 < a); < 1: decays to 0 at a rate that depends on a);
o 1 < a); <2: oscillates
e a); > 2: unstable (diverges)

CSC413/2516 Lectures 4: Optimization 21 /43

lll-conditioned curvature: gradient descent dynamics

@ Just showed
e 0 < a); <1: decays to 0 at a rate that depends on a;
o 1 < a); <2: oscillates
e a); > 2: unstable (diverges)
@ Hence, we need to set the learning rate o < 2/A\pax to prevent
instability, where A ax is the largest eigenvalue, i.e. maximum
curvature.

@ This bounds the rate of progress in another direction:
2
a\j < L.

)\max

@ The quantity Amax/Amin is known as the condition number of A.

Larger condition numbers imply slower convergence of gradient
descent.

CSCA413/2516 Lectures 4 Optimization

22 /43

lll-conditioned curvature: gradient descent dynamics

@ The analysis we just did was for a quadratic toy problem
1
J(0) = §esrTAe.

@ It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

1
J(0) = 5¢9TA49 +b'0+c

@ Since a smooth cost function is well approximated by a convex
quadratic (i.e. second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.

@ If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.

CSC413/2516 Lectures 4: Optimization 23 /43

[ll-conditioned curvature: normalization

@ Suppose we have the following dataset for linear regression.

/\\ /W\\,
W,.,(

X1 X2 t

114.8 0.00323 | 5.1

338.1 0.00183 | 3.2
98.8 0.00279 | 4.1 Wi =V x;

R

W,

@ Which weight, wy or wy, will receive a larger gradient descent update?
@ Which one do you want to receive a larger update?

o Note: the figure vastly understates the narrowness of the ravine!

CSC413/2516 Lectures 4: Optimization 24 /43

[ll-conditioned curvature: normalization

@ Or consider the following dataset:

X1 Xo ‘ t
1003.2 1005.1 | 3.3
1001.1 1008.2 | 4.8

998.3 1003.4 | 2.9

CSC413/2516 Lectures 4: Optimization 25 / 43

[ll-conditioned curvature: normalization

@ To avoid these problems, it's a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

X TR
gj

13

<

@ Hidden units may have non-centered activations, and this is harder to
deal with.
o One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
o A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.

CSC413/2516 Lectures 4: Optimization 26 / 43

Momentum

@ Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

up—a’d
P < up 90
0—60+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

CSC413/2516 Lectures 4: Optimization 27 / 43

Momentum

@ Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

-
P pp—agg
0—60+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

o If 4 =1, conservation of energy implies it will never settle down.

CSC413/2516 Lectures 4: Optimization 27 / 43

Momentum

20
@ In the high curvature directions, the

gradients cancel each other out, so
momentum dampens the oscillations. 0

10

@ In the low curvature directions, the -10

gradients point in the same direction, —20
allowing the parameters to pick up speed.

—30
—30 —-20 —10 0 0 20

@ If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

o 9T
1—p 00

This suggests if you increase p, you should lower a to compensate.

@ Momentum sometimes helps a lot, and almost never hurts.

CSC413/2516 Lectures 4: Optimization 28 / 43

Ravines

@ Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

@ Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

@ An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

@ There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It's available in all the major neural net frameworks.

CSC413/2516 Lectures 4: Optimization 29 / 43

-
RMSprop and Adam

@ Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.

@ RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average s; of the squared gradients.

@ The following update is applied to each coordinate j independently:

5« (1=7)s + 131
a 0F

NGCREXL

o If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

@ Adam = RMSprop + momentum

@ Both optimizers are included in TensorFlow, Pytorch, etc.

CSC413/2516 Lectures 4: Optimization 30 / 43

9j<—9j—

N
After the break

After the break: how to debug learning/optimization

CSC413/2516 Lectures 4: Optimization 31/43

Learning Rate

@ The learning rate « is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

« too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).

CSC413/2516 Lectures 4: Optimization 32/ 43

Training Curves

@ To diagnose optimization problems,
it’s useful to look at training curves:
plot the training cost as a function
of iteration.

@ Gotcha: use a fixed subset of the
training data to monitor the
training error. Evaluating on a training
different batch (e.g. the current cost
one) in each iteration adds a /ot of
noise to the curvel!

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

convergence

@ Gotcha: it's very hard to tell from
the training curves whether an
optimizer has converged. They can
reveal major problems, but they
can't guarantee convergence.

CSCA413/2516 Lectures 4 Optimization

iteration #

33 /43

N
Stochastic Gradient Descent

@ So far, the cost function 7 has been the average loss over the
training examples:

LS Ly (D, 0), 1),

=
.MZ

1L
J(6) = N Zj(:)(g) —

i=1

@ By linearity,
N
1 .
vI0) = Y vaie).
i=1

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!

CSC413/2516 Lectures 4: Optimization 34 /43

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

6 — 6 —avJg(e)

@ SGD can make significant progress before it has even looked at all the datal

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

B [v70(0)] = % S va0(6) = vI(6).

CSC413/2516 Lectures 4: Optimization 35 /43

Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

S

batch gradient descent stochastic gradient descent

CSC413/2516 Lectures 4: Optimization 36 / 43

Stochastic Gradient Descent

@ Problem: if we only look at one training example at a time, we can't
exploit efficient vectorized operations.

o Compromise approach: compute the gradients on a medium-sized
set of training examples, called a mini-batch.

@ Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance:

S 2290

Var

1 aﬂ”] 1 !5 adf)] 1
= Var 5

52 20, | ~ s

oL
00;

@ The mini-batch size S is a hyperparameter. Typical values are 10 or
100.

CSC413/2516 Lectures 4: Optimization 37 /43

Stochastic Gradient Descent: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.

o Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.

e Small batches: perform more weight updates per second because each
one requires less computation.

CSC413/2516 Lectures 4: Optimization 38 /43

Stochastic Gradient Descent: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.
o Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.
e Small batches: perform more weight updates per second because each
one requires less computation.
o Claim: If the wall-clock time were proportional to the number of
FLOPs, then S =1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with § = 100.
o Rewrite minibatch gradient descent as a for-loop:
S=1 S =100
For k=1,...,100: For k=1,...,100:
Or — 01 —aVI®(0;_1) 0 — 01 — 25VIT) (0)

o All else being equal, you'd prefer to compute the gradient at a fresher
value of 8. So S =1 is better.

CSC413/2516 Lectures 4: Optimization 38 /43

N
Stochastic Gradient Descent: Batch Size

@ The reason we don't use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

@ Small batches: An update with S = 10 isn't much more expensive
than an update with S = 1.

o Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

@ Cartoon figure, not drawn to scale:

GPU
time per CPU training
weight examples
update per second
P
@ U/ CPU
batch size batch size

@ Since GPUs afford more parallelism, they saturate at a larger batch
size. Hence, GPUs tend to favor larger batch sizes.

CSC413/2516 Lectures 4: Optimization 39 / 43

N
Stochastic Gradient Descent: Batch Size

@ The convergence benefits of larger batches also see diminishing returns.
@ Small batches: large gradient noise, so large benefit from increased batch size

@ Large batches: SGD approximates the batch gradient descent update, so no
further benefit from variance reduction.

i Sp o RO Valaton B3 Sap o e 03 i e
o] :
Sl &
Small Batch Large Batch g 2o
8 obodoindig
& 2
full batch 2 : i
o cost > Sag :
R P
Batch Size Batch Size

full batch

gradient (b) Simple CNN on Fashion MNIST (¢) ResNet-8 on CIFAR-10

40 Steps to Reach 0.31 Validation AP

distribution
of stochastic
gradients T

.
2T g 27272

2 27272
Batch Size Batch Size

272

(¢) ResNet-50 on Open Images (£) Transformer on LM1B

@ Right: # iterations to reach target validation error as a function of batch size.
(Shallue et al., 2018)

CSC413/2516 Lectures 4: Optimization 40 / 43

-
SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:

o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations

CSC413/2516 Lectures 4: Optimization 41 /43

-
SGD Learning Rate

e Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

l

error

epoch

CSC413/2516 Lectures 4: Optimization 42 /43

Recap

Problem | Diagnostics Workarounds
incorrect gradients | finite differences fix them, or use autodiff
local optima | (hard) random restarts
symmetries | visualize W initialize W randomly
slow progress | slow, linear training curve increase a;; momentum
instability | cost increases decrease «
oscillations | fluctuations in training curve | decrease o; momentum

fluctuations
dead/saturated units
ill-conditioning

CSCA413/2516 Lectures 4 Optimization

fluctuations in training curve
activation histograms
(hard)

decay «; iterate averaging
initial scale of W; RelLU
normalization; momentum;
Adam; second-order opt.

43 /43

