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Overview

Lecture 2 covered the algebraic view of backprop.

This lecture focuses on how to implement an automatic
differentiation library:

build the computation graph
vector-Jacobian products (VJP) for primitive ops
the backwards pass

We’ll cover, Autograd, a lightweight autodiff tool. PyTorch’s
implementation is very similar.

You will probably never have to implement autodiff yourself but it is
good to know its inner workings.
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Confusing Terminology

Automatic differentiation (autodiff) refers to a general way of taking
a program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

Backpropagation is the special case of autodiff applied to neural nets

But in machine learning, we often use backprop synonymously with
autodiff

Autograd is the name of a particular autodiff library we will cover in
this lecture. There are many others, e.g. PyTorch, TensorFlow.
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What Autodiff Is Not: Finite Differences

We often use finite differences to check our gradient calculations.
One-sided version:

∂

∂xi
f (x1, . . . , xN) ≈ f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Two-sided version:
∂

∂xi
f (x1, . . . , xN) ≈ f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h
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What Autodiff Is Not: Finite Differences

Autodiff is not finite differences.

Finite differences are expensive, since you need to do a forward pass for
each derivative.
It also induces huge numerical error.
Normally, we only use it for testing.

Autodiff is both efficient (linear in the cost of computing the value)
and numerically stable.
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What Autodiff Is

An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

In this representation, backprop can be done in a completely mechanical way.

Original program:

z = wx + b

y =
1

1 + exp(−z)

L =
1

2
(y − t)2

Sequence of primitive operations:

t1 = wx

z = t1 + b

t3 = −z
t4 = exp(t3)

t5 = 1 + t4

y = 1/t5

t6 = y − t

t7 = t2
6

L = t7/2
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What Autodiff Is
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Autograd

The rest of this lecture covers how Autograd is implemented.

Source code for the original Autograd package:

https://github.com/HIPS/autograd

Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

https://github.com/mattjj/autodidact

Thanks to Matt Johnson for providing this!
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Building the Computation Graph

Most autodiff systems, including Autograd, explicitly construct the
computation graph.

Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new API.

Autograd instead builds them by tracing the forward pass computation,

allowing for an interface nearly indistinguishable from NumPy.

The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:

value, the actual value computed on a particular set of inputs
fun, the primitive operation defining the node
args and kwargs, the arguments the op was called with

parents, the parent Nodes
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Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

They wrap around NumPy functions:
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Building the Computation Graph

Example:
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Recap: Vector-Jacobian Products

Recall: the Jacobian is the matrix of partial derivatives:

J =
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

xj =
∑
i

yi
∂yi
∂xj

x = y>J

That gives a row vector. We can treat it as a column vector by taking

x = J>y
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Recap: Vector-Jacobian Products

Examples

Matrix-vector product

z = Wx J = W x = W>z

Elementwise operations

y = exp(z) J =

exp(z1) 0
. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually simpler
and more efficient to compute the VJP directly.
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Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).
This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (x)
defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.
Examples from numpy/numpy vjps.py
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Backprop as Message Passing

Consider a näıve backprop implementation where the z module needs
to compute z using the formula:

z =
∂r

∂z
r +

∂s

∂z
s +

∂t

∂z
t

This breaks modularity, since z needs to know how it’s used in the
network in order to compute partial derivatives of r, s, and t.
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Backprop as Message Passing

Backprop as message passing:

Each node receives a bunch
of messages from its
children, which it aggregates
to get its error signal. It
then passes messages to its
parents.

Each of these messages is a VJP.

This formulation provides modularity: each node needs to know how
to compute its outgoing messages, i.e. the VJPs corresponding to
each of its parents (arguments to the function).

The implementation of z doesn’t need to know where z came from.
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Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.
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Backward Pass

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.

grad itself is viewed as a VJP, if we treat L as the 1× 1 matrix with entry 1.

∂L
∂w

=
∂L
∂w
L
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Recap

We saw three main parts to the code:

tracing the forward pass to build the computation graph
vector-Jacobian products for primitive ops
the backwards pass

Building the computation graph requires fancy NumPy gymnastics,
but other two items are basically what I showed you.

You’re encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd
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Learning to learning by gradient descent by gradient
descent

https://arxiv.org/pdf/1606.04474.pdf
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Gradient-Based Hyperparameter Optimization

https://arxiv.org/abs/1502.03492
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After the break

After the break: Distributed Representations
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Overview

Let’s now take a break from backpropagation and see a real example
of a neural net to learn feature representations of words.

We’ll see a lot more neural net architectures later in the course.

We’ll also introduce the models used in Programming Assignment 1.
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Review: Probability and Bayes’ Rule

Suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.
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Language Modeling

From here on, we will focus on learning a good distribution p(s) of
sentences. This problem is known as language modeling.

Assume we have a corpus of sentences s(1), . . . , s(N). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

max
N∏
i=1

p(s(i)).
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Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

This is equivalent to the cross-entropy loss.
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Language Modeling

Probability of a sentence? What does that even mean?

A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT ) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to

predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a context
of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

When we decompose it into separate prediction problems this way, it’s called

an autoregressive model.
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N-Gram Language Models

One sort of Markov model we can learn uses a conditional probability table,
i.e.

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Maybe the simplest way to estimate the probabilities is from the empirical
distribution:

p(w3 = cat |w1 = the,w2 = fat) =
p(w1 = the,w2 = fat,w3 = cat)

p(w1 = the,w2 = fat)

≈ count(the fat cat)

count(the fat)

The phrases we’re counting are called n-grams (where n is the length), so
this is an n-gram language model.

Note: the above example is considered a 3-gram model, not a 2-gram
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N-Gram Language Models

Shakespeare:

Jurafsky and Martin, Speech and Language Processing
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N-Gram Language Models

Wall Street Journal:

Jurafsky and Martin, Speech and Language Processing
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N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Traditional ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n
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Distributed Representations

Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place, i.e. a column of the
table.

But different words are related, so we ought to be able to share information
between them. For instance, consider this matrix of word attributes:

academic politics plural person building
students 1 0 1 1 0
colleges 1 0 1 0 1
legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

And this matrix of how each attribute influences the next word:

bill is are papers built standing
academic − +
politics + −
plural − +
person +
building + +
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Imagine these matrices are layers in an MLP. (One-hot representations of words,
softmax over next word.)

Here, the information about a given word is distributed throughout the
representation. We call this a distributed representation.

In general, when we train an MLP with backprop, the hidden units won’t have
intuitive meanings like in this cartoon. But this is a useful intuition pump for what
MLPs can represent.
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Distributed Representations

We would like to be able to share information between related words.
E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the words in the sentence

The dog got flattened in the yard on Monday.

An n-gram model can’t generalize this way, but a distributed
representation might let us do so.
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Neural Language Model

Predicting the distribution of the next word given the previous K is
just a multiway classification problem.

Inputs: previous K words

Target: next word
Loss: cross-entropy. Recall that this is equivalent to maximum
likelihood:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

log p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

V∑
v=1

ttv log ytv ,

where tiv is the one-hot encoding for the ith word and yiv is the
predicted probability for the ith word being index v .
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Bengio’s Neural Language Model

Here is a classic neural probabilistic language model, or just neural
language model:

Bengio�s neural net for predicting the next word 

              “softmax” units (one per possible next word)  

index of word at t-2 index of word at t-1 

learned distributed 
encoding of word t-2  

learned distributed 
encoding of word t-1 

units that learn to predict the output word from features of the input words 

table look-up table look-up 

skip-layer 
connections 

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Neural Language Model

If we use a 1-of-K encoding for the words, the first layer can be
thought of as a linear layer with tied weights.

The weight matrix basically acts like a lookup table. Each column is
the representation of a word, also called an embedding, feature
vector, or encoding.

“Embedding” emphasizes that it’s a location in a high-dimensonal
space; words that are closer together are more semantically similar
“Feature vector” emphasizes that it’s a vector that can be used for
making predictions, just like other feature mappigns we’ve looked at
(e.g. polynomials)
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Neural Language Model

We can measure the similarity or dissimilarity of two words using

the dot product r>1 r2

Euclidean distance ‖r1 − r2‖
If the vectors have unit norm, the two are equivalent:

‖r1 − r2‖2 = (r1 − r2)>(r1 − r2)

= r>1 r1 − 2r>1 r2 + r>2 r2

= 2− 2r>1 r2

In this case, the dot product is called cosine similarity.
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Neural Language Model

This model is very compact: the number of parameters is linear in the
context size, compared with exponential for n-gram models.

Bengio�s neural net for predicting the next word 

              “softmax” units (one per possible next word)  

index of word at t-2 index of word at t-1 

learned distributed 
encoding of word t-2  

learned distributed 
encoding of word t-1 

units that learn to predict the output word from features of the input words 

table look-up table look-up 

skip-layer 
connections 
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Neural Language Model

What do these word embeddings look like?

It’s hard to visualize an n-dimensional space, but there are algorithms
for mapping the embeddings to two dimensions.

The following 2-D embeddings are done with an algorithm called
tSNE which tries to make distnaces in the 2-D embedding match the
original 30-D distances as closely as possible.

Note: the visualizations are from a slightly different model.
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Neural Language Model
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Neural Language Model
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Neural Language Model
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Neural Language Model

Thinking about high-dimensional embeddings

Most vectors are nearly orthogonal (i.e. dot product is close to 0)
Most points are far away from each other
“In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings.” – Geoff Hinton

The 2-D embeddings might be fairly misleading, since they can’t
preserve the distance relationships from a higher-dimensional
embedding. (I.e., unrelated words might be close together in 2-D, but
far apart in 30-D.)
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GloVe

Fitting language models is really hard:

It’s really important to make good predictions about relative
probabilities of rare words.
Computing the predictive distribution requires a large softmax.

Maybe this is overkill if all you want is word representations.

Global Vector (GloVe) embeddings are a simpler and faster approach
based on a matrix factorization similar to principal component
analysis (PCA).

First fit the distributed word representations using GloVe, then plug
them into a neural net that does some other task (e.g. language
modeling, translation).
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GloVe

Distributional hypothesis: words with similar distributions have similar
meanings (“judge a word by the company it keeps”)

Consider a co-occurrence matrix X, which counts the number of
times two words appear nearby (say, less than 5 positions apart)

This is a V × V matrix, where V is the vocabulary size (very large)

Intuition pump: suppose we fit a rank-K approximation X ≈ RR̃>,
where R and R̃ are V × K matrices.

Each row ri of R is the K -dimensional representation of a word
Each entry is approximated as xij ≈ r>i r̃j
Hence, more similar words are more likely to co-occur
Minimizing the squared Frobenius norm
‖X− RR̃>‖2

F =
∑

i,j(xij − r>i r̃j)
2 is basically PCA.
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GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{( xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Jimmy Ba CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations47 / 49



GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter

Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{( xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Jimmy Ba CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations47 / 49



GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{( xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Jimmy Ba CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations47 / 49



GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{( xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Jimmy Ba CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations47 / 49



GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter
Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{( xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!
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Word Analogies

Here’s a linear projection of word representations for cities and capitals into
2 dimensions.

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Note: this figure actually comes from skip-grams, a predecessor to GloVe.

Jimmy Ba CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations48 / 49



Word Analogies

In other words,
vector(Paris)− vector(France) ≈ vector(London)− vector(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vector(France)− vector(Paris) + vector(London)

Example analogies:
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