CSC413/2516 Lecture 2: Multilayer Perceptrons & Backpropagation

Jimmy Ba
Limits of Linear Classification

- Single neurons (linear classifiers) are very limited in expressive power.
- XOR is a classic example of a function that’s not linearly separable.

There’s an elegant proof using convexity.
Limits of Linear Classification

Convex Sets

- A set S is **convex** if any line segment connecting points in S lies entirely within S. Mathematically,

 $\mathbf{x}_1, \mathbf{x}_2 \in S \implies \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in S$ for $0 \leq \lambda \leq 1$.

- A simple inductive argument shows that for $\mathbf{x}_1, \ldots, \mathbf{x}_N \in S$, **weighted averages**, or **convex combinations**, lie within the set:

 $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_N \mathbf{x}_N \in S$ for $\lambda_i > 0$, $\lambda_1 + \cdots + \lambda_N = 1$.
Half-spaces are obviously convex.

Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.

Similarly, the red line segment must lie within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!
Limits of Linear Classification

A more troubling example

These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with wrap-around)

Translation invariance is commonly desired in vision!
Limits of Linear Classification

A more troubling example

These images represent 16-dimensional vectors. White $= 0$, black $= 1$.

Want to distinguish patterns A and B in all possible translations (with wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the vector $(0.25, 0.25, \ldots, 0.25)$. Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also $(0.25, 0.25, \ldots, 0.25)$. Therefore, it must be classified as B. Contradiction!
Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for **XOR**:

\[
\psi(x) = \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_1x_2
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$\phi_1(x)$</th>
<th>$\phi_2(x)$</th>
<th>$\phi_3(x)$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we’ll use neural nets to learn nonlinear hypotheses directly.
Multilayer Perceptrons

- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That’s in contrast to recurrent neural networks, which can have cycles. (We’ll talk about those later.)
- Typically, units are grouped together into layers.

![Diagram](image)
Multilayer Perceptrons

- Each layer connects N input units to M output units.
- In the simplest case, all input units are connected to all output units. We call this a **fully connected layer**. We’ll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.

Recall from softmax regression: this means we need an $M \times N$ weight matrix.

The output units are a function of the input units:

$$y = f(x) = \phi(Wx + b)$$

A multilayer network consisting of fully connected layers is called a **multilayer perceptron**. Despite the name, it has nothing to do with perceptrons!
Some activation functions:

Linear

\[y = z \]

Rectified Linear Unit (ReLU)

\[y = \max(0, z) \]

Soft ReLU

\[y = \log(1 + e^z) \]
Multilayer Perceptrons

Some activation functions:

- **Hard Threshold**

 \[
 y = \begin{cases}
 1 & \text{if } z > 0 \\
 0 & \text{if } z \leq 0
 \end{cases}
 \]

- **Logistic**

 \[
 y = \frac{1}{1 + e^{-z}}
 \]

- **Hyperbolic Tangent (tanh)**

 \[
 y = \frac{e^z - e^{-z}}{e^z + e^{-z}}
 \]
Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function
Multilayer Perceptrons

```
-0.5

1

1

h1

-0.5

1

1

1

x1

y

1

1

-1

-1

h2

-1.5

1

1

1

x2
```
Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

 \[h^{(1)} = f^{(1)}(x) \]
 \[h^{(2)} = f^{(2)}(h^{(1)}) \]
 \[\vdots \]
 \[y = f^{(L)}(h^{(L-1)}) \]

- Or more simply:

 \[y = f^{(L)} \circ \ldots \circ f^{(1)}(x). \]

- Neural nets provide modularity: we can implement each layer’s computations as a black box.
Neural nets can be viewed as a way of learning features:

\[y = \psi(x) \]

\[h^{(1)} \]

\[h^{(2)} \]

linear regressor / classifier
Feature Learning

- Neural nets can be viewed as a way of learning features:

\[\mathbf{y} = \psi(\mathbf{x}) \]

- The goal:
Feature Learning

Input representation of a digit : 784 dimensional vector.
Feature Learning

Each first-layer hidden unit computes $\sigma(w_i^T x)$

Here is one of the weight vectors (also called a feature).

It’s reshaped into an image, with gray = 0, white = +, black = -.

To compute $w_i^T x$, multiply the corresponding pixels, and sum the result.
Feature Learning

There are 256 first-level features total. Here are some of them.
We’ve seen that there are some functions that linear classifiers can’t represent. Are deep networks any better?

Any sequence of *linear* layers can be equivalently represented with a single linear layer.

$$y = W^{(3)}W^{(2)}W^{(1)}x$$

Deep linear networks are no more expressive than linear regression!

Linear layers do have their uses — stay tuned!
Multilayer feed-forward neural nets with *nonlinear* activation functions are **universal approximators**: they can approximate any function arbitrarily well.

This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)

- Even though ReLU is “almost” linear, it’s nonlinear enough!
Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only requires one hidden layer, though it needs to be extremely wide!
Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:
 \[y = \sigma(x) \]
 \[y = \sigma(5x) \]

- This is good: logistic units are differentiable, so we can tune them with gradient descent. (Stay tuned!)
Expressive Power

- Limits of universality
Expressive Power

- Limits of universality
 - You may need to represent an exponentially large network.
 - If you can learn any function, you’ll just overfit.
 - Really, we desire a compact representation!

We’ve derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net. This suggests you might be able to learn compact representations of some complicated functions.
Limits of universality

- You may need to represent an exponentially large network.
- If you can learn any function, you’ll just overfit.
- Really, we desire a compact representation!

We’ve derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net.

- This suggests you might be able to learn compact representations of some complicated functions
After the break: Backpropagation
We've seen that multilayer neural networks are powerful. But how can we actually learn them?

Backpropagation is the central algorithm in this course.

- It’s an algorithm for computing gradients.
- Really it’s an instance of reverse mode automatic differentiation, which is much more broadly applicable than just neural nets.

 - This is “just” a clever and efficient use of the Chain Rule for derivatives.
 - We’ll see how to implement an automatic differentiation system next week.
Recap: Gradient Descent

- **Recall**: gradient descent moves opposite the gradient (the direction of steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in *all* the layers

Conceptually, not any different from what we’ve seen so far — just higher dimensional and harder to visualize!

We want to compute the cost gradient dJ/dw, which is the vector of partial derivatives.

 - This is the average of dL/dw over all the training examples, so in this lecture we focus on computing dL/dw.
Univariate Chain Rule

- We’ve already been using the univariate Chain Rule.
- Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$\frac{d}{dt} f(x(t)) = \frac{df}{dx} \frac{dx}{dt}.$$
Recall: Univariate logistic least squares model

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2} (y - t)^2 \]

Let’s compute the loss derivatives.
Univariate Chain Rule

How you would have done it in calculus class

\[L = \frac{1}{2} (\sigma(wx + b) - t)^2 \]
\[
\frac{\partial L}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right]
\]
\[
= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx + b) - t)^2
\]
\[
= (\sigma(wx + b) - t) \frac{\partial}{\partial w} (\sigma(wx + b) - t)
\]
\[
= (\sigma(wx + b) - t) \sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)
\]
\[
= (\sigma(wx + b) - t) \sigma'(wx + b) x
\]

\[
\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right]
\]
\[
= \frac{1}{2} \frac{\partial}{\partial b} (\sigma(wx + b) - t)^2
\]
\[
= (\sigma(wx + b) - t) \frac{\partial}{\partial b} (\sigma(wx + b) - t)
\]
\[
= (\sigma(wx + b) - t) \sigma'(wx + b) \frac{\partial}{\partial b} (wx + b)
\]
\[
= (\sigma(wx + b) - t) \sigma'(wx + b)
\]

What are the disadvantages of this approach?
Univariate Chain Rule

A more structured way to do it

Computing the loss:

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2}(y - t)^2 \]

Computing the derivatives:

\[\frac{d\mathcal{L}}{dy} = y - t \]
\[\frac{d\mathcal{L}}{dz} = \frac{d\mathcal{L}}{dy} \sigma'(z) \]
\[\frac{\partial \mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz} x \]
\[\frac{\partial \mathcal{L}}{\partial b} = \frac{d\mathcal{L}}{dz} \]

Remember, the goal isn’t to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.
Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.
A slightly more convenient notation:

- Use \bar{y} to denote the derivative $d\mathcal{L}/dy$, sometimes called the *error signal*.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).
- This is not a standard notation, but I couldn’t find another one that I liked.

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Computing the derivatives:

$$\bar{y} = y - t$$
$$\bar{z} = \bar{y} \sigma'(z)$$
$$\bar{w} = \bar{z} x$$
$$\bar{b} = \bar{z}$$

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L_2-Regularized regression

- $z = wx + b$
- $y = \sigma(z)$
- $\mathcal{L} = \frac{1}{2}(y - t)^2$
- $\mathcal{R} = \frac{1}{2}w^2$
- $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda\mathcal{R}$

Multiclass logistic regression

- $z_\ell = \sum_j w_{\ell j}x_j + b_\ell$
- $y_k = \frac{e^{z_k}}{\sum_\ell e^{z_\ell}}$
- $\mathcal{L} = -\sum_k t_k \log y_k$
Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$\frac{df}{dt}(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Example:

$$f(x, y) = y + e^{xy}$$

$$x(t) = \cos t$$

$$y(t) = t^2$$

Plug in to Chain Rule:

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$
Multivariable Chain Rule

- In the context of backpropagation:

\[
\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}
\]

where the values already computed by our program are:

- In our notation:

\[
\bar{t} = \bar{x} \frac{dx}{dt} + \bar{y} \frac{dy}{dt}
\]
Backpropagation

Full backpropagation algorithm:

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)

v_N denotes the variable we’re trying to compute derivatives of (e.g. loss).

\[
\text{forward pass} \quad \begin{align*}
\text{For } i &= 1, \ldots, N \\
\text{Compute } v_i \text{ as a function of } Pa(v_i)
\end{align*}
\]

\[
\overline{v_N} = 1
\]

\[
\overline{v_i} = \sum_{j \in Ch(v_i)} \overline{v_j} \frac{\partial v_j}{\partial v_i}
\]

backward pass
Backpropagation

Example: univariate logistic least squares regression

Forward pass:
\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2} (y - t)^2 \]
\[\mathcal{R} = \frac{1}{2} w^2 \]
\[\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R} \]

Backward pass:
\[\mathcal{L}_{\text{reg}} = 1 \]
\[\mathcal{R} = \mathcal{L}_{\text{reg}} \frac{d\mathcal{L}_{\text{reg}}}{d\mathcal{R}} = \mathcal{L}_{\text{reg}} \lambda \]
\[\mathcal{L} = \mathcal{L}_{\text{reg}} \frac{d\mathcal{L}_{\text{reg}}}{d\mathcal{L}} = \mathcal{L}_{\text{reg}} \]
\[y = \overline{\mathcal{L}} \frac{d\mathcal{L}}{dy} = \overline{\mathcal{L}} (y - t) \]
\[\overline{z} = \overline{y} \frac{dy}{dz} = \overline{y} \sigma'(z) \]
\[\overline{w} = \overline{z} \frac{dz}{dw} + \overline{\mathcal{R}} \frac{d\mathcal{R}}{dw} = \overline{z} x + \overline{\mathcal{R}} w \]
\[\overline{b} = \overline{z} \frac{dz}{db} = \overline{z} \]
Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

\[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]

\[h_i = \sigma(z_i) \]

\[y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)} \]

\[\mathcal{L} = \frac{1}{2} \sum_k (y_k - t_k)^2 \]

Backward pass:

\[\overline{\mathcal{L}} = 1 \]

\[\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k) \]

\[\overline{w_{ki}^{(2)}} = \overline{y_k} h_i \]

\[\overline{b_k^{(2)}} = \overline{y_k} \]

\[\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)} \]

\[\overline{z_i} = \overline{h_i} \sigma'(z_i) \]

\[\overline{w_{ij}^{(1)}} = \overline{z_i} x_j \]

\[\overline{b_i^{(1)}} = \overline{z_i} \]
Computation graphs showing individual units are cumbersome.

As you might have guessed, we typically draw graphs over the vectorized variables.

We pass messages back analogous to the ones for scalar-valued nodes.
Consider this computation graph:

![Computation Graph](image)

Backprop rules:

\[
\bar{z}_j = \sum_k y_k \frac{\partial y_k}{\partial z_j} \quad \bar{z} = \frac{\partial y}{\partial z}^\top \bar{y},
\]

where \(\partial y/\partial z\) is the **Jacobian matrix**:

\[
\frac{\partial y}{\partial z} = \begin{pmatrix}
\frac{\partial y_1}{\partial z_1} & \cdots & \frac{\partial y_1}{\partial z_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial z_1} & \cdots & \frac{\partial y_m}{\partial z_n}
\end{pmatrix}
\]
Examples

- **Matrix-vector product**
 \[z = Wx \quad \frac{\partial z}{\partial x} = W \quad x = W^Tz \]

- **Elementwise operations**
 \[y = \exp(z) \quad \frac{\partial y}{\partial z} = \begin{pmatrix} \exp(z_1) & 0 \\ \vdots & \ddots \\ 0 & \exp(z_D) \end{pmatrix} \quad \bar{z} = \exp(z) \circ \bar{y} \]

- **Note**: we never explicitly construct the Jacobian. It’s usually simpler and more efficient to compute the VJP directly.
Full backpropagation algorithm (vector form):

Let \(v_1, \ldots, v_N \) be a topological ordering of the computation graph (i.e. parents come before children.)

\(v_N \) denotes the variable we’re trying to compute derivatives of (e.g. loss). It’s a scalar, which we can treat as a 1-D vector.

\[
\text{forward pass} \\
\text{Compute } v_i \text{ as a function of } \text{Pa}(v_i) \\
\overline{v}_N = 1 \\
\text{backward pass} \\
\overline{v}_i = \sum_{j \in \text{Ch}(v_i)} \frac{\partial v_j}{\partial v_i}^\top \overline{v}_j
\]
Vector Form

MLP example in vectorized form:

Forward pass:
\[z = W^{(1)} x + b^{(1)} \]
\[h = \sigma(z) \]
\[y = W^{(2)} h + b^{(2)} \]
\[\mathcal{L} = \frac{1}{2} \| t - y \|^2 \]

Backward pass:
\[\mathcal{L} = 1 \]
\[\bar{y} = \mathcal{L} (y - t) \]
\[W^{(2)} = \bar{y} h^\top \]
\[b^{(2)} = \bar{y} \]
\[\bar{h} = W^{(2)^\top} \bar{y} \]
\[\bar{z} = \bar{h} \circ \sigma'(z) \]
\[W^{(1)} = \bar{z} x^\top \]
\[b^{(1)} = \bar{z} \]
Computational Cost

- Computational cost of forward pass: one add-multiply operation per weight

\[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]

- Computational cost of backward pass: two add-multiply operations per weight

\[\overline{w}_{ki}^{(2)} = \overline{y}_k h_i \]
\[\overline{h}_i = \sum_k \overline{y}_k \overline{w}_{ki}^{(2)} \]

- Rule of thumb: the backward pass is about as expensive as two forward passes.

- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.
Closing Thoughts

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
 - No evidence for biological signals analogous to error derivatives.
 - All the biologically plausible alternatives we know about learn much more slowly (on computers).
 - So how on earth does the brain learn?
Closing Thoughts

The psychological profiling [of a programmer] is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large.

– Don Knuth

- By now, we’ve seen three different ways of looking at gradients:
 - **Geometric**: visualization of gradient in weight space
 - **Algebraic**: mechanics of computing the derivatives
 - **Implementational**: efficient implementation on the computer

- When thinking about neural nets, it’s important to be able to shift between these different perspectives!