
Lecture 7, Part 1: Generalization

Roger Grosse

1 Introduction

When we train a machine learning model, we don’t just want it to learn to
model the training data. We want it to generalize to data it hasn’t seen
before. Fortunately, there’s a very convenient way to measure an algorithm’s
generalization performance: we measure its performance on a held-out test
set, consisting of examples it hasn’t seen before. If an algorithm works well
on the training set but fails to generalize, we say it is overfitting. Improving
generalization (or preventing overfitting) in neural nets is still somewhat of
a dark art, but this lecture will cover a few simple strategies that can often
help a lot.

1.1 Learning Goals

• Know the difference between a training set, validation set, and test
set.

• Be able to reason qualitatively about how training and test error de-
pend on the size of the model, the number of training examples, and
the number of training iterations.

• Understand the motivation behind, and be able to use, several strate-
gies to improve generalization:

– reducing the capacity

– early stopping

– weight decay

– ensembles

– input transformations

– stochastic regularization

2 Measuring generalization

So far in this course, we’ve focused on training, or optimizing, neural net-
works. We defined a cost function, the average loss over the training set:

1

N

N∑
i=1

L(y(x(i)), t(i)). (1)

But we don’t just want the network to get the training examples right; we
also want it to generalize to novel instances it hasn’t seen before.

Fortunately, there’s an easy way to measure a network’s generalization
performance. We simply partition our data into three subsets:

1

• A training set, a set of training examples the network is trained on.
There are lots of variants on this
basic strategy, including something
called cross-validation. Typically,
these alternatives are used in
situations with small datasets,
i.e. less than a few thousand
examples. Most applications of
neural nets involve datasets large
enough to split into training,
validation and test sets.

• A validation set, which is used to tune hyperparameters such as the
number of hidden units, or the learning rate.

• A test set, which is used to measure the generalization performance.

The losses on these subsets are called training, validation, and test
loss, respectively. Hopefully it’s clear why we need separate training and
test sets: if we train on the test data, we have no idea whether the network
is correctly generalizing, or whether it’s simply memorizing the training
examples. It’s a more subtle point why we need a separate validation set.

• We can’t tune hyperparameters on the training set, because we want
to choose values that will generalize. For instance, suppose we’re
trying to choose the number of hidden units. If we choose a very large
value, the network will be able to memorize the training data, but will
generalize poorly. Tuning on the training data could lead us to choose
such a large value.

• We also can’t tune them on the test set, because that would be “cheat-
ing.” We’re only allowed to use the test set once, to report the final
performance. If we “peek” at the test data by using it to tune hyper-
parameters, it will no longer give a realistic estimate of generalization
performance.1

The most basic strategy for tuning hyperparameters is to do a grid
search: for each hyperparameter, choose a set of candidate values. Sep-
arately train models using all possible combinations of these values, and
choose whichever configuration gives the best validation error. A closely
related alternative is random search: train a bunch of networks using
random configurations of the hyperparameters, and pick whichever one has
the best validation error. The advantage of random search over grid search
is as follows: suppose your model has 10 hyperparameters, but only two
of them are actually important. (You don’t know which two.) It’s infea-
sible to do a grid search in 10 dimensions, but random search still ought
to provide reasonable coverage of the 2-dimensional space of the important
hyperparameters. On the other hand, in a scientific setting, grid search has
the advantage that it’s easy to reproduce the exact experimental setup.

3 Reasoning about generalization

If a network performs well on the training set but generalizes badly, we
say it is overfitting. A network might overfit if the training set contains
accidental regularities. For instance, if the task is to classify handwritten
digits, it might happen that in the training set, all images of 9’s have pixel
number 122 on, while all other examples have it off. The network might

1Actually, there’s some fascinating recent work showing that it’s possible to use a test
set repeatedly, as long as you add small amounts of noise to the average error. This hasn’t
yet become a standard technique, but it may sometime in the future. See Dwork et al.,
2015, “The reusable holdout: preserving validity in adaptive data analysis.”

2

Figure 1: (left) Qualitative relationship between the number of training
examples and training and test error. (right) Qualitative relationship be-
tween the number of parameters (or model capacity) and training and test
error.

decide to exploit this accidental regularity, thereby correctly classifying all
the training examples of 9’s, without learning the true regularities. If this
property doesn’t hold on the test set, the network will generalize badly.

As an extreme case, remember the network we constructed in Lecture
5, which was able to learn arbitrary Boolean functions? It had a separate
hidden unit for every possible input configuration. This network architec-
ture is able to memorize a training set, i.e. learn the correct answer for
every training example, even though it will have no idea how to classify
novel instances. The problem is that this network has too large a capac-
ity, i.e. ability to remember information about its training data. Capacity
isn’t a formal term, but corresponds roughly to the number of trainable
parameters (i.e. weights). The idea is that information is stored in the net-
work’s trainable parameters, so networks with more parameters can store
more information.

In order to reason qualitatively about generalization, let’s think about
how the training and generalization error vary as a function of the number
of training examples and the number of parameters. Having more train-
ing data should only help generalization: for any particular test example,
the larger the training set, the more likely there will be a closely related
training example. Also, the larger the training set, the fewer the accidental
regularities, so the network will be forced to pick up the true regularities.
Therefore, generalization error ought to improve as we add more training
examples. If the test error increases with the

number of training examples,
that’s a sign that you have a bug
in your code or that there’s
something wrong with your model.

On the other hand, small training sets are easier to memorize
than large ones, so training error tends to increase as we add more exam-
ples. As the training set gets larger, the two will eventually meet. This is
shown qualitatively in Figure 1.

Now let’s think about the model capacity. As we add more parameters,
it becomes easier to fit both the accidental and the true regularities of the
training data. Therefore, training error improves as we add more parame-
ters. The effect on generalization error is a bit more subtle. If the network
has too little capacity, it generalizes badly because it fails to pick up the
regularities (true or accidental) in the data. If it has too much capacity, it
will memorize the training set and fail to generalize. Therefore, the effect

3

of capacity on test error is non-monotonic: it decreases, and then increases.
We would like to design network architectures which have enough capacity
to learn the true regularities in the training data, but not enough capacity
to simply memorize the training set or exploit accidental regularities. This
is shown qualitatively in Figure 1.

3.1 Bias and variance

For now, let’s focus on squared error loss. We’d like to mathematically
model the generalization error of the classifier, i.e. the expected error on
examples it hasn’t seen before. To formalize this, we need to introduce the
data generating distribution, a hypothetical distribution pD(x, t) that
all the training and test data are assumed to have come from. We don’t
need to assume anything about the form of the distribution, so the only
nontrivial assumption we’re making here is that the training and test data
are drawn from the same distribution.

Suppose we have a test input x, and we make a prediction y (which,
for now, we treat as arbitrary). We’re interested in the expected error
if the targets are sampled from the conditional distribution pD(t |x). By
applying the properties of expectation and variance, we can decompose this
expectation into two terms: This derivation makes use of the

formula Var[z] = E[z2] − E[z]2 for
a random variable z.E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x] by linearity of expectation

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x] by the formula for variance

= (y − E[t |x])2 + Var[t |x]

, (y − y?)2 + Var[t |x],

where in the last step we introduce y? = E[t |x], which is the best possible
prediction we can make, because the first term is nonnegative and the second
term doesn’t depend on y. The second term is known as the Bayes error,
and corresponds to the best possible generalization error we can achieve
even if we model the data perfectly.

Now let’s treat y as a random variable. Assume we repeat the following
experiment: sample a training set randomly from pD, train our network,
and compute its predictions on x. If we suppress the dependence on x for
simplicity, the expected squared error decomposes as:

E[(y − t)2] = E[(y − y?)2] + Var(t)

= E[y2? − 2y?y + y2] + Var(t)

= y2? − 2y?E[y] + E[y2] + Var(t) by linearity of expectation

= y2? − 2y?E[y] + E[y]2 + Var(y) + Var(t) by the formula for variance

= (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

The first term is the bias, which tells us how far off the model’s average
prediction is. The second term is the variance, which tells us about the
variability in its predictions as a result of the choice of training set, i.e. the

4

amount to which it overfits the idiosyncrasies of the training data. The
third term is the Bayes error, which we have no control over. So this de-
composition is known as the bias-variance decomposition.

To visualize this, suppose we have two test examples, with targets
(t(1), t(2)). Figure 2 is a visualization in output space, where the axes
correspond to the outputs of the network on these two examples. Understand why output space is

different from input space or
weight space.

It shows
the test error as a function of the predictions on these two test examples;
because we’re measuring mean squared error, the test error takes the shape
of a quadratic bowl. The various quantities computed above can be seen in
the diagram:

• The generalization error is the average squared length ‖y− t‖2 of the
line segment labeled residual.

• The bias term is the average squared length ‖E[y] − y∗‖2 of the line
segment labeled bias.

• The variance term is the spread in the green x’s.

• The Bayes error is the spread in the black x’s.

4 Reducing overfitting

Now that we’ve talked about generalization error and how to measure it,
let’s see how we can improve generalization by reducing overfitting. Notice
that I said reduce, rather than eliminate, overfitting. Good models will
probably still overfit at least a little bit, and if we try to eliminate overfitting,
i.e. eliminate the gap between training and test error, we’ll probably cripple
our model so that it doesn’t learn anything at all. Improving generalization
is somewhat of a dark art, and there are very few techniques which both
work well in practice and have rigorous theoretical justifications. In this
section, I’ll outline a few tricks that seem to help a lot. In practice, most
good neural networks combine several of these tricks. Unfortunately, for the
most part, these intuitive justifications are hard to translate into rigorous
guarantees.

4.1 Reducing capacity

Remember the nonmonotonic relationship between model capacity and gen-
eralization error from Figure 1? This immediately suggests a strategy: there
are various hyperparameters which affect the capacity of a network, such as
the number of layers, or the number of units per layer. A network with L layers and H

units per layer will have roughly
LH2 weights. Think about why
this is.

We can tune these
parameters on a validation set in order to find the sweet spot, which has
enough capacity to learn the true regularities, but not enough to overfit.
(We can do this tuning with grid search or random search, as described
above.)

Besides reducing the number of layers or the number of units per layer,
another strategy is to reduce the number of parameters by adding a bottle-
neck layer. This is a layer with fewer units than the layers below or above
it. As shown in Figure 3, this can reduce the total number of connections,
and hence the number of parameters.

5

Figure 2: Schematic relating bias, variance, and error. Top: If the model
is underfitting, the bias will be large, but the variance (spread of the green
x’s) will be small. Bottom: If the model is overfitting, the bias will be
small, but the variance will be large.

Figure 3: An example of reducing the number of parameters by inserting a
linear bottleneck layer.

6

In general, linear and nonlinear layers have different uses. Recall that
adding nonlinear layers can increase the expressive power of a network archi-
tecture, i.e. broaden the set of functions it’s able to represent. By contrast,
adding linear layers can’t increase the expressivity, because the same func-
tion can be represented by a single layer. For instance, in Figure 3, the
left-hand network can represent all the same functions as the right-hand
one, since one can set W̃ = W(2)W(1); it can also represent some functions
that the right-hand one can’t. The main use of linear layers, therefore, is
for bottlenecks. One benefit is to reduce the number of parameters, as de-
scribed above. Bottlenecks are also useful for another reason which we’ll
talk about later on, when we discuss autoencoders.

Reducing capacity has an important drawback: it might make the net-
work too simple to learn the true regularities in the data. Therefore, it’s
often preferable to keep the capacity high, but prevent it from overfitting
in other ways. We’ll discuss some such alternatives now.

4.2 Early stopping

Think about how the training and test error change over the course of
training. Clearly, the training error ought to continue improving, since we’re
optimizing the training error. (If you find the training error going up, there
may be something wrong with your optimizer.) The test error generally
improves at first, but it may eventually start to increase as the network
starts to overfit. Such a pattern is shown in Figure 4. (Curves such as these
are referred to as training curves.) This suggests an obvious strategy: stop
the training at the point where the generalization error starts to increase.
This strategy is known as early stopping. Of course, we can’t do early
stopping using the test set, because that would be cheating. Instead, we
would determine when to stop by monitoring the validation error during
training.

Unfortunately, implementing early stopping is a bit harder than it looks
from this cartoon picture. The reason is that the training and validation
error fluctuate during training (because of stochasticity in the gradients), so
it can be hard to tell whether an increase is simply due to these fluctuations.
One common heuristic is to space the validation error measurements far
apart, e.g. once per epoch. If the validation error fails to improve after one
epoch (or perhaps after several consecutive epochs), then we stop training.
This heuristic isn’t perfect, and if we’re not careful, we might stop training
too early.

4.3 Regularization and weight decay

So far, all of the cost functions we’ve discussed have consisted of the average
of some loss function over the training set. Often, we want to add another
term, called a regularization term, or regularizer, which penalizes hy-
potheses we think are somehow pathological and unlikely to generalize well.

7

Figure 4: Training curves, showing the relationship between the number of
training iterations and the training and test error. (left) Idealized version.
(right) Accounting for fluctuations in the error, caused by stochasticity in
the SGD updates.

Figure 5: Two sets of weights which make the same predictions assuming
inputs x1 and x2 are identical.

The total cost, then, is

J (θ) =
1

N

N∑
i=1

L(y(x,θ), t)︸ ︷︷ ︸
training loss

+ R(θ)︸ ︷︷ ︸
regularizer

(2)

For instance, suppose we are training a linear regression model with two
inputs, x1 and x2, and these inputs are identical in the training set. The
two sets of weights shown in Figure 5 will make identical predictions on the
training set, so they are equivalent from the standpoint of minimizing the
loss. However, Hypothesis A is somehow better, because we would expect it
to be more stable if the data distribution changes. E.g., suppose we observe
the input (x1 = 1, x2 = 0) on the test set; in this case, Hypothesis A will
predict 1, while Hypothesis B will predict -8. The former is probably more
sensible. We would like a regularizer to favor Hypothesis A by assigning it
a smaller penalty.

One such regularizer which achieves this is L2 regularization; This is an abuse of terminology;
mathematically speaking, this
really corresponds to the squared
L2 norm.

for a
linear model, it is defined as follows:

RL2(w) =
λ

2

D∑
j=1

w2
j . (3)

(The hyperparameter λ is sometimes called the weight cost.) L2 reg-
ularization tends to favor hypotheses where the norms of the weights are

8

smaller. For instance, in the above example, with λ = 1, it assigns a penalty
of 1

2(12+12) = 1 to Hypothesis A and 1
2((−8)2+102) = 82 to Hypothesis B,

so it strongly prefers Hypothesis A. Because the cost function includes both
the training loss and the regularizer, the training algorithm is encouraged
to find a compromise between the fit to the training data and the norms
of the weights. L2 regularization can be generalized to neural nets in the
obvious way: penalize the sum of squares of all the weights in all layers of
the network.

It’s pretty straightforward to incorporate regularizers into the stochastic
gradient descent computations. In particular, by linearity of derivatives,

∂J
∂θj

=
1

N

N∑
i=1

∂L(i)

∂θj
+
∂R
∂θj

. (4)

If we derive the SGD update in the case of L2 regularization, we get an
interesting interpretation. Observe that in SGD, the

regularizer derivatives do not need
to be estimated stochastically.

θj ← θj − α
∂J (i)

∂θj
(5)

= θj − α

(
∂L(i)

∂θj
+
∂R
∂θj

)
(6)

= θj − α

(
∂L(i)

∂θj
+ λθj

)
(7)

= (1− αλ)θj − α
∂L(i)

∂θj
. (8)

In each iteration, we shrink the weights by a factor of 1 − αλ. For this
reason, L2 regularization is also known as weight decay.

Regularization is one of the most fundamental concepts in machine learn-
ing, and tons of theoretical justifications have been proposed. Regulariz-
ers are sometimes viewed as penalizing the “complexity” of a network, or
favoring explanations which are “more likely.” One can formalize these
viewpoints in some idealized settings. However, these explanations are very
difficult to make precise in the setting of neural nets, and they don’t explain
a lot of the phenomena we observe in practice. For these reasons, I won’t
attempt to justify weight decay beyond the explanation I just provided.

4.4 Ensembles

Think back to Figure 2. If you average the predictions of multiple networks
trained independently on separate training sets, this reduces the variance of
the predictions, which can lead to lower loss. Of course, we can’t actually
carry out the hypothetical procedure of sampling training sets indepen-
dently (otherwise we’re probably better off combining them into one big
training set). We could try to train a bunch of networks on the same train-
ing set starting from different initializations, but their predictions might be
too similar to get much benefit from averaging. However, we can try to sim-
ulate the effect of independent training sets by somehow injecting variability
into the training procedure. Here some ways of injecting variability:

9

• Train on random subsets of the full training data. This procedure is
known as bagging.

• Train networks with different architectures (e.g. different numbers of
layers or units, or different choice of activation function).

• Use entirely different models or learning algorithms.

The set of trained models whose predictions we’re combining is known as
an ensemble. Ensembles of networks often generalize quite a bit better
than single networks. This benefit is significant enough that the winning
entries for most of the major machine learning competitions (e.g. ImageNet,
Netflix, etc.) used ensembles.

It’s possible to prove that ensembles outperform individual networks in
the case of convex loss functions. In particular, suppose the loss function
L is convex as a function of the outputs y. This isn’t the same as the cost

being convex as a function of θ,
which we saw can’t happen for
MLPs. Lots of loss functions are
convex with respect to y, such as
squared error or cross-entropy.

Then, by the definition of
convexity,

L(λ1y1+· · ·+λNyN , t) ≤ λ1L(y1, t)+· · ·+λNL(yN , t) for λi ≥ 0,
∑
i

λi = 1.

(9)
Hence, the average of the predictions must beat the average losses of the
individual predictions. Note that this is true regardless of where the ys came
from. They could be outputs of different neural networks, or completely
different learning algorithms, or even numbers you pulled out of a hat. This result is closely related to the

Rao-Blackwell theorem from
statistics.

The
guarantee doesn’t hold for non-convex cost functions (such as error rate),
but ensembles still tend to be very effective in practice.

4.5 Data augmentation

Another trick is to artificially augment the training set by introducing dis-
tortions into the inputs, a procedure known as data augmentation. This
is most commonly used in vision applications. Suppose we’re trying to
classify images of objects, or of handwritten digits. Each time we visit a
training example, we can randomly distort it, for instance by shifting it
by a few pixels, adding noise, rotating it slightly, or applying some sort of
warping. This can increase the effective size of the training set, and make it
more likely that any given test example has a closely related training exam-
ple. Note that the class of useful transformations will depend on the task;
for instance, in object recognition, it might be advantageous to flip images
horizontally, whereas this wouldn’t make sense in the case of handwritten
digit classification.

4.6 Stochastic regularization

One of the biggest advances in neural networks in the past few years is the
use of stochasticity to improve generalization. So far, all of the network
architectures we’ve looked at compute functions deterministically. But by
injecting some stochasticity into the computations, we can sometimes pre-
vent certain pathological behaviors and make it hard for the network to
overfit. We tend to call this stochastic regularization, even though it
doesn’t correspond to adding a regularization term to the cost function.

10

The most popular form of stochastic regularization is dropout. The
algorithm itself is simple: we drop out each individual unit with some prob-
ability ρ (usually ρ = 1/2) by setting its activation to zero. We can represent
this in terms of multiplying the activations by a mask variable mi, which
randomly takes the values 0 or 1:

hi = mi · φ(z(i)). (10)

We derive the backprop equations in the usual way:

z(i) = hi ·
dhi

dz(i)
(11)

= hi ·mi · φ′(z(i)) (12)

Why does dropout help? Think back to Figure 5, where we had two
different sets of weights which make the same predictions if inputs x1 and
x2 are always identical. We saw that L2 regularization strongly prefers A
over B. Dropout has the same preference. Suppose we drop out each of the
inputs with 1/2 probability. B’s predictions will vary wildly, causing it to
get much higher error on the training set. Thus, it can achieve some of the
same benefits that L2 regularization is intended to achieve.

One important point: while stochasticity is helpful in preventing over-
fitting, we don’t want to make predictions stochastically at test time. One
näıve approach would be to simply not use dropout at test time. Unfortu-
nately, this would mean that all the units receive twice as many incoming
signals as they do during training time, so their responses will be very dif-
ferent. Therefore, at test time, we compensate for this by multiplying the
values of the weights by 1 − ρ. You’ll see an interesting interpretation of
this in Homework 4.

In a few short years, dropout has become part of the standard tool-
box for neural net training, and can give a significant performance boost,
even if one is already using the other techniques described above. Other
stochastic regularizers have also been proposed; notably batch normaliza-
tion, a method we already mentioned in the context of optimization, but
which has also been shown to have some regularization benefits. It’s also
been observed that the stochasticity in stochastic gradient descent (which
is normally considered a drawback) can itself serve as a regularizer. The
details of stochastic regularization are still poorly understood, but it seems
likely that it will continue to be a useful technique.

11

	Introduction
	Learning Goals

	Measuring generalization
	Reasoning about generalization
	Bias and variance

	Reducing overfitting
	Reducing capacity
	Early stopping
	Regularization and weight decay
	Ensembles
	Data augmentation
	Stochastic regularization

