
CSC413/2516 Winter 2020 Course Information

CSC413/2516 Winter 2020 — Course Information
Neural Networks and Deep Learning

Course web site: http://csc413-2020.github.io

Overview

It is very hard to hand design programs to solve many real world problems, e.g. distinguishing
images of cats v.s. dogs. Machine learning algorithms allow computers to learn from example
data, and produce a program that does the job. Neural networks are a class of machine learning
algorithm originally inspired by the brain, but which have recently have seen a lot of success at
practical applications. Theyre at the heart of production systems at companies like Google and
Facebook for image processing, speech-to-text, and language understanding. This course gives an
overview of both the foundational ideas and the recent advances in neural net algorithms.

Roughly the first 2/3 of the course focuses on supervised learning — training the network to
produce a specified behavior when one has lots of labeled examples of that behavior. The last 1/3
focuses on unsupervised learning and reinforcement learning.

Schedule

There is both an afternoon section and a night section for the course. Both will cover the same
material, and will have the same assignments and final exam. Since both sections are at full
enrollment, please attend your assigned section. See the course web page for detailed times.

Prerequisites

This is a second course in machine learning, so it has some substantial prerequisites. These prereq-
uisites will be enforced, including for grad students.

• Multivariable Calculus: MAT235/MAT237/MAT257

• Linear Algebra: MAT221H1/MAT223H1/MAT240H1

• Machine Learning: CSC311/CSC411/STA314

Load

There are 24 hours of lectures and 11 hours of tutorials.

1

http://csc413-2020.github.io

CSC413/2516 Winter 2020 Course Information

Readings

There is no required textbook for the class. A few small readings may be assigned if the need arises.
These required readings will all be available on the web, for free.

There are also some relevant resources which are freely available online. We will try to provide
links on a lecture-by-lecture basis.

• Video lectures for UofT Professor Geoffrey Hinton’s Coursera course. Professor Hinton is one
of the fathers of the field, so think of these as the Feynman Lectures of neural nets.
https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk SNhz9

• Deep Learning, a textbook by Yoshua Bengio, Ian Goodfellow, and Aaron Courville.
http://www.deeplearningbook.org/

• Andrej Karpathy’s lecture notes on convolutional networks. These are very readable and
cover the material in roughly the first half of the course.
http://cs231n.github.io/

• Richard Socher’s lecture notes, focusing on RNNs.
http://cs224d.stanford.edu/syllabus.html

• Metacademy, an online website (which one of the instructors is involved with) which helps
you construct personalized learning plans and which has links to lots of resources relevant
to particular concepts. We’ll post links to relevant Metacademy concepts as the course pro-
gresses.
http://www.metacademy.org

• Video lectures for Hugo Larochelle’s neural networks course. These are similar to Professor
Hinton’s lectures but a bit more mathematical.
http://info.usherbrooke.ca/hlarochelle/neural networks/content.html

• David MacKay’s excellent textbook, Information Theory, Inference, and Learning Algorithms.
This isn’t focused on neural nets per se, but it has some overlap with this course, especially
the lectures on Bayesian models.
http://www.inference.phy.cam.ac.uk/mackay/itila/

• Neural Networks and Deep Learning, a book by physicist Michael Nielsen which covers the
basics of neural nets and backpropagation.
http://neuralnetworksanddeeplearning.com/

Marking Scheme

The undergraduate marking scheme is as follows:

2

https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9
http://www.deeplearningbook.org/
http://cs231n.github.io/
http://cs224d.stanford.edu/syllabus.html
http://www.metacademy.org
http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://neuralnetworksanddeeplearning.com/

CSC413/2516 Winter 2020 Course Information

• Midterm test: 15%.

• Final exam: 35%.

– A minimum mark of 30% on the final is required in order to pass the course.

• Four programming assignments: 30%

– Your three highest marks will count for 10% each.

• Written homeworks: 20%.

– Total of 5, weighted equally.

– Lowest mark will be dropped.

The marking scheme for graduate students is identical to the marking scheme for undergraduates,
except that the final exam is replaced with a final project. The requirements and marking scheme
for the final project will be posted separately on the course web page.

Academic Integrity

By the time you get to an advanced course like csc421 you’ve heard this lots of times, so we’ll keep
it brief: avoid academic offenses (a.k.a. cheating). All graded work in this course is individual work.

Written Homeworks

In order to give you additional practice with the material, we assign written homeworks, which give
you additional practice with the course content and encourage you to keep on top of the material.
Roughly speaking, there will be one homework due each week that doesn’t have another assignment
or test. Each one consists of 2-3 conceptual questions and is meant to take a few hours.

Dates. Weekly homeworks will typically be due at 11:59pm on Thursdays. See the course web
page for particular deadlines. Each homework covers material up through the lecture one week
prior to the deadline.

Format. Weekly homeworks must be submitted in PDF format through MarkUs. We encour-
age typesetting using LATEX, but scans of handwritten solutions are also acceptable.

Lateness. Weekly homeworks will be accepted up to 3 days late, but 10% will be deducted for
each day late, rounded up to the nearest day. Any exceptions require an official Student Medical
Certificate.

Weighting. In aggregate, the homeworks count for 20% of the total grade for the course, so
individually they count for roughly 5% each. The lowest homework grade for the term will be
dropped.

Collaboration policy. You are expected to work on the homeworks by yourself. You should
not discuss them with anyone except the tutors or the instructor. The report you hand in should

3

CSC413/2516 Winter 2020 Course Information

be entirely your own work and you may be asked to demonstrate how you got any results that you
report.

Programming Assignments

A typical assignment will require you to write (or modify) and use some Python code that imple-
ments a simple version of a learning procedure that has recently been covered in the course. You
will have to submit a brief report (roughly two pages plus figures) that describes the results you
obtained.

Dates. Programming assignments will typically be due at 11:59pm on Friday. See the course
web page for particular deadlines. Each assignment uses lecture material up through the lecture
one week prior to the deadline.

Format. All programming assignment reports must be handed in as PDFs through MarkUs.
They must be typed.

Lateness. Programming assignments will be accepted up to 3 days late, but 10% will be
deducted for each day late, rounded up to the nearest day. Any exceptions require an official
Student Medical Certificate.

Weighting. Your three highest programming assignment marks will count for 10% each for a
total of 30%. The lowest assignment mark will be dropped.

Collaboration policy. You are expected to work on the assignments by yourself. You should
not discuss them with anyone except the tutors or the instructor. The report you hand in should
be entirely your own work and you may be asked to demonstrate how you got any results that you
report.

Computation Resources

Many of the deep learning success stories in the recent years rely on the advances of modern GPU
computing. The programming assignments here are lightweight comparing to the state of the art
deep learning models in terms of their computation requirement. But we highly recommend you
to debug your models and to complete the experiments on a modern GPU. Here are the list of free
computation resources you have access to:

Colab (Recommended) Google Colab is a web-based iPython Notebook service that has
access to a free Nvidia K80 GPU per Google account. Although it was initially developed for
TensorFlow usage, Colab can easily be configured to run PyTorch, see tutorial here: https://
medium.com/@chsafouane/getting-started-with-pytorch-on-google-colab-811c59a656b6

GCE (Recommended) Google Compute Engine delivers virtual machines running in Google’s
data center. You get $300 free credit when you sign up. They provide some of the latest GPUs on
the market.

AWS-EC2 Amazone Elastic Compute Cloud (EC2) is a popular cloud platform. You may get
free credit somewhere online.

4

https://colab.research.google.com/
https://medium.com/@chsafouane/getting-started-with-pytorch-on-google-colab-811c59a656b6
https://medium.com/@chsafouane/getting-started-with-pytorch-on-google-colab-811c59a656b6
https://cloud.google.com/compute/
https://aws.amazon.com/ec2/

CSC413/2516 Winter 2020 Course Information

CS Teaching Lab There are some very old GPUs in our CS Teaching Labs / CDF labs, see
https://www.teach.cs.toronto.edu/faq.html#ABOUT5 for details.

Tests

Midterm. The midterm test (worth 15% of the course grade) will be held outside of the usual
lecture time. It is a closed book test. It covers material up through Lecture 10 (one week prior to
the test).

Final exam. The final exam is worth 35% of the course grade. It is a closed book exam.
About 25% of the questions will be based on material that came before the midterm and about
75% on material that came after the midterm.

Missed tests. Missed tests will get a score of 0 except in the case of an official Student Medical
Certificate or a written (not email) request submitted at least one week before the test date and
approved by the instructor.

Online forum

We’ll use Piazza for the course forum. The URL will be on the course website.

Auditing

If you are not registered in the class, it is possible for you to audit it (sit in on the lectures).
Here are the official university rules on auditors (taken from the Department of Computer Science
instructor’s advice page):

To audit a course is to sit and listen to the lectures, and perhaps to the tutorials, without
formally enrolling. Auditing is acceptable if the auditor is a student at U of T, and no University
resources are to be committed to the auditor. The “must be a student” condition means that
students of other universities, employees of outside organizations (or even of U of T itself!), or
any other non-students, are not permitted to be auditors. (If we did not have this rule, the
University would require us to collect auditing fees, and we are not willing to do that.)

The “no resources used” condition means that auditors do not get computing accounts,
cannot have term work marked, and cannot write exams. In other words, they cannot use
instructors time, TA time, or administrative resources of any kind.

An auditor may not attend class unless there is an empty seat after the last regularly-enrolled
student has sat down. That sounds frivolous, but in fact it is an aspect of an important point: if
enrollment in a course has been closed because the room size has been reached, then there may
well be physical seats for auditors, because it is rare for every student to appear for a lecture,
but auditors will not be allowed to enroll later on in the course, even if some students drop it.
Neither instructors nor the department can waive this rule.

Often these conditions are perfectly acceptable to auditors; we don’t mean to ban the prac-

tice, but only to live within the University’s rules.

5

https://www.teach.cs.toronto.edu/
https://www.teach.cs.toronto.edu/faq.html#ABOUT5

