
CSC413/2516 Winter 2020 with Professor Jimmy Ba Programming Assignment 3

Programming Assignment 3: Attention-Based Neural Machine Trans-
lation

Due Date: Monday, Mar. 16th, at 11:59pm
Based on an assignment by Lisa Zhang

Submission: You must submit 3 files through MarkUs1: a PDF file containing your writeup, titled
a3-writeup.pdf, and your code files nmt.ipynb and bert.ipynb. Your writeup must be typed.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

1https://markus.teach.cs.toronto.edu/csc413-2020-01
2https://csc413-2020.github.io/assets/misc/syllabus.pdf
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Introduction

In this assignment, you will train a few attention-based neural machine translation models to
translate words from English to Pig-Latin. Along the way, you’ll gain experience with several
important concepts in NMT, including gated recurrent neural networks and attention.

Pig Latin

Pig Latin is a simple transformation of English based on the following rules (applied on a per-word
basis):

1. If the first letter of a word is a consonant, then the letter is moved to the end of the word,
and the letters “ay” are added to the end: team → eamtay.

2. If the first letter is a vowel, then the word is left unchanged and the letters “way” are added
to the end: impress → impressway.

3. In addition, some consonant pairs, such as “sh”, are treated as a block and are moved to the
end of the string together: shopping → oppingshay.

To translate a whole sentence from English to Pig-Latin, we simply apply these rules to each word
independently:

i went shopping→ iway entway oppingshay

Goal: We would like a neural machine translation model to learn the rules of Pig-Latin im-
plicitly, from (English, Pig-Latin) word pairs. Since the translation to Pig Latin involves moving
characters around in a string, we will use character-level recurrent neural networks for our model.

Because English and Pig-Latin are so similar in structure, the translation task is almost a copy
task; the model must remember each character in the input, and recall the characters in a specific
order to produce the output. This makes it an ideal task for understanding the capacity of NMT
models.

Setting Up

We recommend that you use Colab(https://colab.research.google.com/) for the assignment,
as all the assignment notebooks have been tested on Colab. From the assignment zip file, you
will find one python notebook file: nmt.ipynb. To setup the Colab environment, just upload this
notebook file using the upload tab at https://colab.research.google.com/.
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Data

The data for this task consists of pairs of words {(s(i), t(i))}Ni=1 where the source s(i) is an English
word, and the target t(i) is its translation in Pig-Latin. The dataset is composed of unique words
from the book “Sense and Sensibility,” by Jane Austen. The vocabulary consists of 29 tokens:
the 26 standard alphabet letters (all lowercase), the dash symbol -, and two special tokens <SOS>

and <EOS> that denote the start and end of a sequence, respectively. 3 The dataset contains 6387
unique (English, Pig-Latin) pairs in total; the first few examples are:

{ (the, ethay), (family, amilyfay), (of, ofway), ... }

In order to simplify the processing of mini-batches of words, the word pairs are grouped based
on the lengths of the source and target. Thus, in each mini-batch the source words are all the same
length, and the target words are all the same length. This simplifies the code, as we don’t have to
worry about batches of variable-length sequences.

Outline of Assignment

Throughout the rest of the assignment, you will implement some attention-based neural machine
translation models, and finally train the models and examine the results. You will first imple-
ment three main building blocks: Gated Recurrent Unit (GRU), Additive attention and Scaled
dot-product attention. Using these building blocks, you will implement two encoders (RNN and
transformer encoders) and three decoders (RNN, RNN+additive attention and transformer de-
coders). Using these, you will train three final models:

• Part 1: (RNN encoder) + (RNN decoder)

• Part 2: (RNN encoder) + (RNN decoder with additive attention)

• Part 3: (Transformer encoder) + (Transformer decoder)

• Part 4: BERT fine-tuning

Deliverables

Each section is followed by a checklist of deliverables to add in the assignment writeup. To also give
a better sense of our expectations for the answers to the conceptual questions, we’ve put maximum
sentence limits. You will not be graded for any additional sentences.

3Note that for the English-to-Pig-Latin task, the input and output sequences share the same vocabulary; this is
not always the case for other translation tasks (i.e., between languages that use different alphabets).
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Part 1: Gated Recurrent Unit (GRU) [2pt]

Translation is a sequence-to-sequence problem: in our case, both the input and output are sequences
of characters. A common architecture used for seq-to-seq problems is the encoder-decoder model [2],
composed of two RNNs, as follows:

c a t <EOS> <SOS> a t c a y

a t c a y <EOS>

Encoder Decoder

Training

Figure 1: Training the NMT encoder-decoder architecture.

c a t <EOS> <SOS>

a t c a y <EOS>

Encoder Decoder

Generation

Figure 2: Generating text with the NMT encoder-decoder architecture.

The encoder RNN compresses the input sequence into a fixed-length vector, represented by
the final hidden state hT . The decoder RNN conditions on this vector to produce the translation,
character by character.

Input characters are passed through an embedding layer before they are fed into the encoder
RNN; in our model, we learn a 29× 10 embedding matrix, where each of the 29 characters in the
vocabulary is assigned a 10-dimensional embedding. At each time step, the decoder RNN outputs a
vector of unnormalized log probabilities given by a linear transformation of the decoder hidden state.
When these probabilities are normalized, they define a distribution over the vocabulary, indicating
the most probable characters for that time step. The model is trained via a cross-entropy loss
between the decoder distribution and ground-truth at each time step.

The decoder produces a distribution over the output vocabulary conditioned on the previous
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hidden state and the output token in the previous timestep. A common practice used to train
NMT models is to feed in the ground-truth token from the previous time step to condition the
decoder output in the current step. This training procedure is known as “teacher-forcing” shown in
Figure 1. At test time, we don’t have access to the ground-truth output sequence, so the decoder
must condition its output on the token it generated in the previous time step, as shown in Figure 2.

Lets begin with implementing common encoder models: the Gated Recurrent Unit and the
transformer encoder.

Open https://colab.research.google.com/drive/1rHYoCXb96INsxCSc1G4OmZhisnuabsIH on
Colab and answer the following questions.

1. [1pt] The forward pass of a Gated Recurrent Unit is defined by the following equations:

rt = σ(Wirxt +Whrht−1 + br) (1)

zt = σ(Wizxt +Whzht−1 + bz) (2)

gt = tanh(Winxt + rt � (Whnht−1 + bg)) (3)

ht = (1− z)� gt + z � ht−1, (4)

where� is the element-wise multiplication. Although PyTorch has a GRU built in (nn.GRUCell),
we’ll implement our own GRU cell from scratch, to better understand how it works. Com-
plete the __init__ and forward methods of the MyGRUCell class, to implement the above
equations. A template has been provided for the forward method.

2. [0pt] Run the cells including GRU-based encoder/decoder models.

3. [1pt] Train the RNN encoder/decoder model. We’ve provided implementations for recurrent
encoder/decoder models using the GRU cell. (Make sure you have run all the relevant previous
cells to load the training and utility functions.)

By default, the script runs for 100 epochs. At the end of each epoch, the script prints training
and validation losses, and the Pig-Latin translation of a fixed sentence, “the air conditioning
is working”, so that you can see how the model improves qualitatively over time. The script
also saves several items to the directory h20-bs64-rnn:

• The best encoder and decoder model paramters, based on the validation loss.

• A plot of the training and validation losses.

After the training is complete, we will now use this model to translate the words in the next
notebook cell using translate_sentence function. Try a few of your own words by changing
the variable TEST_SENTENCE. Identify two distinct failure modes and briefly describe them.
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Deliverables

Create a section in your report called Gated Recurrent Units. Add the following in this section:

• A screenshot of your full MyGRUCell implementation. [1pt]

• The training/validation loss plots. [0pts]

• Your answer for the question in step 3. Make sure to add at least one input-output pair
for each failure case you identify. Your answer should not exceed three sentences in total
(excluding the failure cases you’ve identified. ) [1pt]
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Part 2: Additive Attention [2pt]

Attention allows a model to look back over the input sequence, and focus on relevant input tokens
when producing the corresponding output tokens. For our simple task, attention can help the
model remember tokens from the input, e.g., focusing on the input letter c to produce the output
letter c.

The hidden states produced by the encoder while reading the input sequence, henc1 , . . . , hencT can
be viewed as annotations of the input; each encoder hidden state henci captures information about
the ith input token, along with some contextual information. At each time step, an attention-based
decoder computes a weighting over the annotations, where the weight given to each one indicates
its relevance in determining the current output token.

In particular, at time step t, the decoder computes an attention weight α
(t)
i for each of the

encoder hidden states henci . The attention weights are defined such that 0 ≤ α(t)
i ≤ 1 and

∑
i α

(t)
i =

1. α
(t)
i is a function of an encoder hidden state and the previous decoder hidden state, f(hdect−1, h

enc
i ),

where i ranges over the length of the input sequence.
There are a few engineering choices for the possible function f . In this assignment, we will

investigate two different attention models: 1) the additive attention using a two-layer MLP and 2)
the scaled dot product attention, which measures the similarity between the two hidden states.

To unify the interface across different attention modules, we consider attention as a function
whose inputs are triple (queries, keys, values), denoted as (Q,K, V ).

In the additive attention, we will learn the function f , parameterized as a two-layer fully-

connected network with a ReLU activation. This network produces unnormalized weights α̃
(t)
i that

are used to compute the final context vector.

...

+
Decoder Hidden States Encoder Hidden States

batch_size

batch_size

seq_len

hidden_sizehidden_size

batch_size

seq_len

1

Attention Weights

Figure 3: Dimensions of the inputs, Decoder Hidden States (query), Encoder Hidden States
(keys/values) and the attention weights (α(t)).
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For the forward pass, you are given a batch of query of the current time step, which has dimen-
sion batch_size x hidden_size, and a batch of keys and values for each time step of the input
sequence, both have dimension batch_size x seq_len x hidden_size. The goal is to obtain the
context vector. We first compute the function f(Qt,K) for each query in the batch and all corre-
sponding keys Ki, where i ranges over seq_len different values. You must do this in a vectorized
fashion. Since f(Qt,Ki) is a scalar, the resulting tensor of attention weights should have dimension
batch_size x seq_len x 1. Some of the important tensor dimensions in the AdditiveAttention
module are visualized in Figure 3. The AdditiveAttention module should return both the context
vector batch_size x 1 x hidden_size and the attention weights batch_size x seq_len x 1.

1. [1pt] Read how the provided forward methods of the AdditiveAttention class computes

α̃
(t)
i , α

(t)
i , ct. Write down the mathematical expression for these quantity as a function of

W1,W2, b1, b2, Qt,Ki.

(Hint: Take a look at the equations in Part 4.1 for the scaled dot product attention model.)

α̃
(t)
i = f(Qt,Ki) =

α
(t)
i =

ct =

Here, α̃
(t)
i is the unnormalized attention weights; α

(t)
i is the attention weights in between 0

and 1; ct is the final context vector.

2. [1pt] We will now apply the AdditiveAttention module to the RNN decoder. You are given
a batch of decoder hidden states as the query, hdect−1, for time t − 1, which has dimension
batch_size x hidden_size, and a batch of encoder hidden states as the keys and values,
henc = [henc1 , . . . , henci , . . . ] (annotations), for each timestep in the input sequence, which has
dimension batch_size x seq_len x hidden_size.

Qt ← hdect−1, K ← henc, V ← henc

We will use these as the inputs to the self.attention to obtain the context. The output
context vector is concatenated with the input vector and passed into the decoder GRU cell
at each time step, as shown in Figure 4.

Fill in the forward method of the RNNAttentionDecoder class to implement the interface
shown in Figure 4. There are three steps we will need to implement:

(a) Get the embedding corresponding to the time step. (given)

(b) Compute the context vector and the attention weights using self.attentionl. (imple-
ment)

8
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...

+

h1
enc

α1 αT

Figure 4: Computing a context vector with attention.

(c) Concatenate the context vector with the current decoder input. (implement)

(d) Feed the concatenation to the decoder GRU cell to obtain the new hidden state. (given)

3. [0pt] Now run the following cell to train a language model that has additive attention in its
decoder. Find one training example where the decoder with attention performs better than
the decoder without attention. Show the input/outputs of the model with attention, and the
model without attention that you’ve trained in the previous section.

4. [0pt] How does the training speed compare? Why?

Deliverables

Create a section called Additive Attention. Add the following in this section:

• Three equations for question 1. [1pt]

• A screenshot of your RNNAttentionDecoder class implementation. [1pt]

• Training/validation plots you’ve obtained in this section. [0 pts]

• Answers to question 3. [0 pts]

• Answer to question 4.[0 pts]
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Part 3: Scaled Dot Product Attention [4pt]

1. [0.5pt] In lecture, we learnt about Scaled Dot-product Attention used in the transformer
models. The function f is a dot product between the linearly transformed query and keys
using weight matrices Wq and Wk:

α̃
(t)
i = f(Qt,Ki) =

(WqQt)
T (WkKi)√
d

,

α
(t)
i = softmax(α̃(t))i,

ct =
T∑
i=1

α
(t)
i WvVi,

where, d is the dimension of the query and the Wv denotes weight matrix project the value
to produce the final context vectors.

Implement the scaled dot-product attention mechanism. Fill in the forward meth-
ods of the ScaledDotAttention class. Use the PyTorch torch.bmm (or @) to compute the
dot product between the batched queries and the batched keys in the forward pass of the
ScaledDotAttention class for the unnormalized attention weights.

The following functions are useful in implementing models like this. You might find it useful
to get familiar with how they work. (click to jump to the PyTorch documentation):

• squeeze

• unsqueeze

• expand as

• cat

• view

• bmm (or @)

Your forward pass needs to work with both 2D query tensor (batch_size x (1) x hidden_size)
and 3D query tensor (batch_size x k x hidden_size).

2. [0.5pt] Implement the causal scaled dot-product attention mechanism. Fill in the
forward method in the CausalScaledDotAttention class. It will be mostly the same as
the ScaledDotAttention class. The additional computation is to mask out the attention
to the future time steps. You will need to add self.neg_inf to some of the entries in the
unnormalized attention weights. You may find torch.tril handy for this part.
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Figure 5: The transformer architecture. [3]
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3. [0.5pt] We will now use ScaledDotAttention as the building blocks for a simplified trans-
former [3] encoder.

The encoder looks like the left half of Figure 5. The encoder consists of three components
(already provided):

• Positional encoding: Without any additional modifications, self attention is permutation-
equivariant. To encode the position of each word, we add to its embedding a constant
vector that depends on its position:

pth word embedding = input embedding + positional encoding(p)

We follow the same positional encoding methodology described in [3]. That is we use
sine and cosine functions:

PE(pos, 2i) = sin
pos

100002i/dmodel
(5)

PE(pos, 2i+ 1) = cos
pos

100002i/dmodel
(6)

Since we always use the same positional encodings throughout the training, we pre-
generate all those we’ll need while constructing this class (before training) and keep
reusing them throughout the training.

• A ScaledDotAttention operation.

• A following MLP.

Now, complete the forward method of TransformerEncoder. Most of the code is given,
except for two lines with . . . in them. Complete these lines.

4. [0.5pt] The decoder, in addition to all the components the encoder has, also requires a
CausalScaledDotAttention component. Take a look at Figure 5. The transformer solves
the translation problem using layers of attention modules. In each layer, we first apply the
CausalScaledDotAttention self-attention to the decoder inputs followed by ScaledDotAttention

attention module to the encoder annotations, similar to the attention decoder from the pre-
vious question. The output of the attention layers are fed into an hidden layer using ReLU
activation. The final output of the last transformer layer are passed to the self.out to com-
pute the word prediction. To improve the optimization, we add residual connections between
the attention layers and ReLU layers.

Now, complete the forward method of TransformerDecoder. Again, most of the code is
given to you - fill in the two lines that have . . . .

5. [1pt] Now, train the language model with transformer based encoder/decoder. How do the
translation results compare to the previous decoders? Write a short, qualitative analysis.

12
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6. [1pt] Modify the transformer decoder __init__ to use non-causal attention for both self at-
tention and encoder attention. What do you observe when training this modified transformer?
How do the results compare with the causal model? Why?

7. [0pt] What are the advantages and disadvantages of using additive attention vs scaled dot-
product attention? List one advantage and one disadvantage for each method.

Deliverables

Create a section in your report called Scaled Dot Product Attention. Add the following:

• Screenshots of your ScaledDotProduct, CausalScaledDotProduct, TransformerEncoder

and TransformerDecoder implementations. Highlight the lines you’ve added. [2pt]

• Training/validation plots you’ve generated. Your response to question 5. Your analysis should
not exceed three sentences (excluding the failure cases you’ve identified). [1pt]

• Your response to question 6. Your response should not exceed three sentences. [1pt]

• Your response to question 7. [0pt]
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Part 4: BERT for arithmetic sentiment analysis [2pt]

In this section, we will learn how to use a pre-trained BERT model to determine whether an verbal
numerical expression is negative (label 0), zero (label 1), or positive (label 2). For example, “eight
minus ten” is negative so the output of our sentence classifier should output label index 0. We start
by explaining what BERT is, and how we can add a classifier on top of the pre-trained BERT to per-
form sentiment analysis for verbal numerical expressions. Most code is given to you in the notebook
https://colab.research.google.com/drive/1QMGZsQ5u7JWuXiwvOhaH_OUd8Cn8E3aw Your task
is to slightly modify the sentence classifier layer, make plots, report performances, and think about
inference examples to test the model. Please carefully review the background for BERT before
starting to answer the questions. The Hugging Face transformers library, used in this tutorial, has
more than 20k stars on github due to its ease of use, and will be very useful for your research or
projects in the future.

Background for BERT:

Bidirectional Encoder Representations from Transformers (BERT) [1], as the name suggests, is
a language model based on the Transformer [3] encoder architecture that has been pre-trained on
a large dataset of unlabeled sentences from Wikipedia and BookCorpus [4]. Given a sequence of
tokens representing sentence(s), BERT outputs a “contextualized representation” vector for each
of the token. Now, suppose we are given some down-stream tasks, such as sentence classification
or question-answering. We can take the BERT model, add a small layer on top of the BERT
representation(s), and then fine-tune the added parameters and BERT parameters on the down-
stream dataset, which is typically much smaller than the data used to pre-train BERT.

In traditional language modeling task, the objective is to maximize the log likelihood of pre-
dicting the current word (or token) in the sentence, given the previous words (to the left of current
work) as context. This is called the “autoregressive model”. In BERT, however, we wish to predict
the current word given both the words before and after (i.e. to the left and to the right) of the
sentence–hence “bidirectional”. To be able to attend from both directions, BERT uses the encoder
Transformer, which does not apply any attention masking unlike the decoder.

We briefly describe how BERT is pre-trained. BERT has 2 task objectives for pre-training: (1)
Masked Language Modeling (Masked LM), and (2) Next Sentence Prediction (NSP). The input to
the model is a sequence of tokens of the form:

[CLS] Sentence A [SEP] Sentence B,

where [CLS] (“class”) and [SEP] (“separator”) are special tokens. In Masked LM, some percentage
of the input tokens are converted into [MASK] tokens, and the objective is to use the final layer
representation for that masked token to predict the correct word that was masked out4. For

4The full training detail is slightly more complicated, but conceptually similar.
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BERT BERT
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Question Paragraph

Start/End Span

BERT
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[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 6: Overall pre-training and fine-tuning for BERT. Reproduced from BERT paper [1]

NSP, the task is to use the contextualized representation for the [CLS] token to perform binary
classification for whether sentence A and sentence B are consecutive sentences in the unlabeled
dataset. See Figure 6 for the conceptual picture of BERT pre-training and fine-tuning.

In this assignment, you will be fine-tuning BERT on a single sentence classification task
(see below about the dataset). Figure 7 illustrates the architecture for fine-tuning on this task.
We prepend the tokenized sentence with the [CLS] token, then feed the sequence into BERT. We
then take the contextualized [CLS] token representation at the last layer of BERT and add either
a softmax layer on top corresponding to the number of output classes in the task. Alternatively,
we can have fully connected hidden layers before the softmax layer for more expressivity for harder
tasks. Then, both the new layers and the entire BERT parameters are trained end to end on the
task for a few epochs.
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Figure 7: Fine-tuning BERT for single sentence classification by adding a layer on top of the
contextualized [CLS] token representation. Reproduced from BERT paper [1]

Dataset Description

The verbal arithmetic dataset contains pairs of input sentence and label. The label is tertiary. Label
0, 1, 2 mean the input expressions are evaluated as “negative” , “zero”, and “positive” respectively.
Note that the size of training dataset is 640 and the size of test dataset is 160. In our dataset, we
only have sentences with three word tokens as the input, similar to the examples shown below:

Input expression Label Label meaning

eighteen minus eighteen 1 “zero”
four plus seven 2 “positive”
four minus ten 0 “negative”

Questions:

1. [0pt] Classifier layer. Open the notebook https://colab.research.google.com/drive/

1QMGZsQ5u7JWuXiwvOhaH_OUd8Cn8E3aw, we have provided two example BERT classes:

BertCSC413 Linear and BertCSC413 MLP Example that both add a classifier for classification.

In this part, you need to make your own BertCSC413 MLP class by, for example, modifying
the provided examples: change the number of layers; change the number of hidden neurons;
or try a different activation.
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2. [0pt] In the notebook, we instantiated two different BERT models from BertCSC413 MLP
class, which are called model freeze bert and model finetune bert in the notebook. Run the
training and evaluation functions to train both models.

Comment on how these two models will differ during the training? Which one would lead to
smaller training errors? Which one would generalize better? And briefly discuss why models
are failing under certain target labels.

3. [1pt] Try a few unseen examples of arithmetic questions using either model freeze bert or
model finetune bert model, and find 10 interesting results. We will give full marks as long
as you provide some comments for why you chose some of the examples. The interesting
results can, for example, be both successful extrapolation/interpolation results or surprising
failure cases. You can find some examples in our notebook.

4. [1pt] This is an open question, and we will give full marks as long as you show an attempt
to try one of the following tasks. [1] Try data augmentation tricks to improve the
performances for certain target labels that models were failing to predict. [2] Make a t-sne or
PCA plot to visualize the embedding vectors of word tokens related to arithmetic expressions.
[3] Try different hyperparameter tunings. E.g. learning rates, optimizer, architecture of the
classifier, training epochs, and batch size. [4] Evaluate the Multi-class Matthews correlation
score for our imbalanced test dataset. [5] Run a baseline model using MLP without pre-
trained BERT. You can assume the sequence length of all the data is 3 in this case.

Deliverables:

• Description of how your sentence classifier on top of BERT architecture is different from the
one given. Your answer should be one sentence. [0pts]

• Two training error curves with “freeze” and “fine-tuned” models. Two tables or lists that
show the test performance with trained “freeze” and “fine-tuned” models. Your qualitative
answer for question 2. Your answer should not exceed 4 sentences [0pts]

• 10 inference results in question 5 as well as brief comments on why they are interesting
or representative results. Your answer should not exceed 3 sentences, you don’t need to
describe all 10 inference results [1pt]

• Explanation of what you did for the open question and some preliminary results. Your answer
should not exceed 4 sentences. [1pt]

What you need to submit

• Two code files: nmt.ipynb, bert.ipynb.
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• A PDF document titled a3-writeup.pdf containing your answers to the conceptual questions,
and the attention visualizations, with explanations.
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